Soil organic carbon fractions in the Great Plains of the United States: an application of mid-infrared spectroscopy
Spectroscopy is a powerful means of increasing the availability of soil data necessary for understanding carbon cycling in a changing world. Here, we develop a calibration transfer methodology to appropriately apply an existing mid infrared (MIR) spectral library with analyte data on the distributio...
Gespeichert in:
Veröffentlicht in: | Biogeochemistry 2021-10, Vol.156 (1), p.97-114 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114 |
---|---|
container_issue | 1 |
container_start_page | 97 |
container_title | Biogeochemistry |
container_volume | 156 |
creator | Sanderman, Jonathan Baldock, Jeffrey A. Dangal, Shree R. S. Ludwig, Sarah Potter, Stefano Rivard, Charlotte Savage, Kathleen |
description | Spectroscopy is a powerful means of increasing the availability of soil data necessary for understanding carbon cycling in a changing world. Here, we develop a calibration transfer methodology to appropriately apply an existing mid infrared (MIR) spectral library with analyte data on the distribution of soil organic carbon (SOC) into particulate (POC), mineral-associated (MAOC), and pyrogenic (PyC) forms to nearly 8000 soil samples collected in the Great Plains ecoregion of the United States. We then use this SOC fraction database in combination with a machine learning-based predictive soil mapping approach to explore the controls on the distribution of fractions through soil profiles and across the region. The relative abundance of each fraction had unique depth distribution profiles with POC fraction dropping exponentially with depth, the MAOC fraction having a broad distribution with a maxima at 35–50 cm, and the PyC fraction showed a slight subsurface maxima (10–20 cm) and then a steady decline with increasing depth. Within the Great Plains ecoregion, clay content was a strong control on the total amount and relative proportion of each fraction in both the surface and subsoil horizons. Sandy soils and soils in cool semiarid regions contained significantly more POC relative to the MAOC and PyC fractions. Cultivated soils had significantly less SOC than grassland soils with losses following a predictable pattern: POC > MAOC ≫ PyC. This SOC fraction database and resulting maps can now form the basis for improved representation of SOC dynamics in biogeochemical models. |
doi_str_mv | 10.1007/s10533-021-00755-1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2574554836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48761833</jstor_id><sourcerecordid>48761833</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-eee8547c583da6e6020f169f6548a19e04b2c7427ec7c0320ac20f89eb4376b83</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKtfQBACnqMvyebPHqXYKhQUasFbyKbZuqVuapIe_PbGrujN0-MNv5mBQeiSwg0FULeJguCcAKOkvEIQeoRGVChOBBWvx2gEVGrChOSn6CylDQDUCvgITReh2-IQ17bvHHY2NqHHbbQud6FPuOtxfvN4Fr3N-Hlru6KF9qAt-y77FV5km306Ryet3SZ_8XPHaDm9f5k8kPnT7HFyNye2Ap2J916LSjmh-cpKL4FBS2XdSlFpS2sPVcOcqpjyTjngDKwrhK59U3ElG83H6HrI3cXwsfcpm03Yx75UGiZUJUoOl4ViA-ViSCn61uxi927jp6Fgvvcyw16m7GUOexlaTHwwpQL3ax__ov91XQ2uTcoh_vZUWkmqOedf-fB1mw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574554836</pqid></control><display><type>article</type><title>Soil organic carbon fractions in the Great Plains of the United States: an application of mid-infrared spectroscopy</title><source>SpringerLink Journals</source><creator>Sanderman, Jonathan ; Baldock, Jeffrey A. ; Dangal, Shree R. S. ; Ludwig, Sarah ; Potter, Stefano ; Rivard, Charlotte ; Savage, Kathleen</creator><creatorcontrib>Sanderman, Jonathan ; Baldock, Jeffrey A. ; Dangal, Shree R. S. ; Ludwig, Sarah ; Potter, Stefano ; Rivard, Charlotte ; Savage, Kathleen</creatorcontrib><description>Spectroscopy is a powerful means of increasing the availability of soil data necessary for understanding carbon cycling in a changing world. Here, we develop a calibration transfer methodology to appropriately apply an existing mid infrared (MIR) spectral library with analyte data on the distribution of soil organic carbon (SOC) into particulate (POC), mineral-associated (MAOC), and pyrogenic (PyC) forms to nearly 8000 soil samples collected in the Great Plains ecoregion of the United States. We then use this SOC fraction database in combination with a machine learning-based predictive soil mapping approach to explore the controls on the distribution of fractions through soil profiles and across the region. The relative abundance of each fraction had unique depth distribution profiles with POC fraction dropping exponentially with depth, the MAOC fraction having a broad distribution with a maxima at 35–50 cm, and the PyC fraction showed a slight subsurface maxima (10–20 cm) and then a steady decline with increasing depth. Within the Great Plains ecoregion, clay content was a strong control on the total amount and relative proportion of each fraction in both the surface and subsoil horizons. Sandy soils and soils in cool semiarid regions contained significantly more POC relative to the MAOC and PyC fractions. Cultivated soils had significantly less SOC than grassland soils with losses following a predictable pattern: POC > MAOC ≫ PyC. This SOC fraction database and resulting maps can now form the basis for improved representation of SOC dynamics in biogeochemical models.</description><identifier>ISSN: 0168-2563</identifier><identifier>EISSN: 1573-515X</identifier><identifier>DOI: 10.1007/s10533-021-00755-1</identifier><language>eng</language><publisher>Cham: Springer Science + Business Media</publisher><subject>Analytical methods ; Arid regions ; Arid zones ; Biogeosciences ; Carbon ; Carbon cycle ; Clay minerals ; Depth ; Distribution ; Earth and Environmental Science ; Earth Sciences ; Ecosystems ; Environmental Chemistry ; Grasslands ; Infrared analysis ; Infrared spectra ; Infrared spectroscopy ; Learning algorithms ; Life Sciences ; Machine learning ; Organic carbon ; Organic soils ; ORIGINAL PAPERS ; Particulate organic carbon ; Relative abundance ; Sandy soils ; Semi arid areas ; Semiarid zones ; Soil ; Soil mapping ; Soil profiles ; Soil properties ; Spectrum analysis ; Subsoils</subject><ispartof>Biogeochemistry, 2021-10, Vol.156 (1), p.97-114</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-eee8547c583da6e6020f169f6548a19e04b2c7427ec7c0320ac20f89eb4376b83</citedby><cites>FETCH-LOGICAL-a408t-eee8547c583da6e6020f169f6548a19e04b2c7427ec7c0320ac20f89eb4376b83</cites><orcidid>0000-0002-3215-1706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10533-021-00755-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10533-021-00755-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sanderman, Jonathan</creatorcontrib><creatorcontrib>Baldock, Jeffrey A.</creatorcontrib><creatorcontrib>Dangal, Shree R. S.</creatorcontrib><creatorcontrib>Ludwig, Sarah</creatorcontrib><creatorcontrib>Potter, Stefano</creatorcontrib><creatorcontrib>Rivard, Charlotte</creatorcontrib><creatorcontrib>Savage, Kathleen</creatorcontrib><title>Soil organic carbon fractions in the Great Plains of the United States: an application of mid-infrared spectroscopy</title><title>Biogeochemistry</title><addtitle>Biogeochemistry</addtitle><description>Spectroscopy is a powerful means of increasing the availability of soil data necessary for understanding carbon cycling in a changing world. Here, we develop a calibration transfer methodology to appropriately apply an existing mid infrared (MIR) spectral library with analyte data on the distribution of soil organic carbon (SOC) into particulate (POC), mineral-associated (MAOC), and pyrogenic (PyC) forms to nearly 8000 soil samples collected in the Great Plains ecoregion of the United States. We then use this SOC fraction database in combination with a machine learning-based predictive soil mapping approach to explore the controls on the distribution of fractions through soil profiles and across the region. The relative abundance of each fraction had unique depth distribution profiles with POC fraction dropping exponentially with depth, the MAOC fraction having a broad distribution with a maxima at 35–50 cm, and the PyC fraction showed a slight subsurface maxima (10–20 cm) and then a steady decline with increasing depth. Within the Great Plains ecoregion, clay content was a strong control on the total amount and relative proportion of each fraction in both the surface and subsoil horizons. Sandy soils and soils in cool semiarid regions contained significantly more POC relative to the MAOC and PyC fractions. Cultivated soils had significantly less SOC than grassland soils with losses following a predictable pattern: POC > MAOC ≫ PyC. This SOC fraction database and resulting maps can now form the basis for improved representation of SOC dynamics in biogeochemical models.</description><subject>Analytical methods</subject><subject>Arid regions</subject><subject>Arid zones</subject><subject>Biogeosciences</subject><subject>Carbon</subject><subject>Carbon cycle</subject><subject>Clay minerals</subject><subject>Depth</subject><subject>Distribution</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecosystems</subject><subject>Environmental Chemistry</subject><subject>Grasslands</subject><subject>Infrared analysis</subject><subject>Infrared spectra</subject><subject>Infrared spectroscopy</subject><subject>Learning algorithms</subject><subject>Life Sciences</subject><subject>Machine learning</subject><subject>Organic carbon</subject><subject>Organic soils</subject><subject>ORIGINAL PAPERS</subject><subject>Particulate organic carbon</subject><subject>Relative abundance</subject><subject>Sandy soils</subject><subject>Semi arid areas</subject><subject>Semiarid zones</subject><subject>Soil</subject><subject>Soil mapping</subject><subject>Soil profiles</subject><subject>Soil properties</subject><subject>Spectrum analysis</subject><subject>Subsoils</subject><issn>0168-2563</issn><issn>1573-515X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kE9LAzEUxIMoWKtfQBACnqMvyebPHqXYKhQUasFbyKbZuqVuapIe_PbGrujN0-MNv5mBQeiSwg0FULeJguCcAKOkvEIQeoRGVChOBBWvx2gEVGrChOSn6CylDQDUCvgITReh2-IQ17bvHHY2NqHHbbQud6FPuOtxfvN4Fr3N-Hlru6KF9qAt-y77FV5km306Ryet3SZ_8XPHaDm9f5k8kPnT7HFyNye2Ap2J916LSjmh-cpKL4FBS2XdSlFpS2sPVcOcqpjyTjngDKwrhK59U3ElG83H6HrI3cXwsfcpm03Yx75UGiZUJUoOl4ViA-ViSCn61uxi927jp6Fgvvcyw16m7GUOexlaTHwwpQL3ax__ov91XQ2uTcoh_vZUWkmqOedf-fB1mw</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Sanderman, Jonathan</creator><creator>Baldock, Jeffrey A.</creator><creator>Dangal, Shree R. S.</creator><creator>Ludwig, Sarah</creator><creator>Potter, Stefano</creator><creator>Rivard, Charlotte</creator><creator>Savage, Kathleen</creator><general>Springer Science + Business Media</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-3215-1706</orcidid></search><sort><creationdate>20211001</creationdate><title>Soil organic carbon fractions in the Great Plains of the United States</title><author>Sanderman, Jonathan ; Baldock, Jeffrey A. ; Dangal, Shree R. S. ; Ludwig, Sarah ; Potter, Stefano ; Rivard, Charlotte ; Savage, Kathleen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-eee8547c583da6e6020f169f6548a19e04b2c7427ec7c0320ac20f89eb4376b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytical methods</topic><topic>Arid regions</topic><topic>Arid zones</topic><topic>Biogeosciences</topic><topic>Carbon</topic><topic>Carbon cycle</topic><topic>Clay minerals</topic><topic>Depth</topic><topic>Distribution</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecosystems</topic><topic>Environmental Chemistry</topic><topic>Grasslands</topic><topic>Infrared analysis</topic><topic>Infrared spectra</topic><topic>Infrared spectroscopy</topic><topic>Learning algorithms</topic><topic>Life Sciences</topic><topic>Machine learning</topic><topic>Organic carbon</topic><topic>Organic soils</topic><topic>ORIGINAL PAPERS</topic><topic>Particulate organic carbon</topic><topic>Relative abundance</topic><topic>Sandy soils</topic><topic>Semi arid areas</topic><topic>Semiarid zones</topic><topic>Soil</topic><topic>Soil mapping</topic><topic>Soil profiles</topic><topic>Soil properties</topic><topic>Spectrum analysis</topic><topic>Subsoils</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanderman, Jonathan</creatorcontrib><creatorcontrib>Baldock, Jeffrey A.</creatorcontrib><creatorcontrib>Dangal, Shree R. S.</creatorcontrib><creatorcontrib>Ludwig, Sarah</creatorcontrib><creatorcontrib>Potter, Stefano</creatorcontrib><creatorcontrib>Rivard, Charlotte</creatorcontrib><creatorcontrib>Savage, Kathleen</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Biogeochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanderman, Jonathan</au><au>Baldock, Jeffrey A.</au><au>Dangal, Shree R. S.</au><au>Ludwig, Sarah</au><au>Potter, Stefano</au><au>Rivard, Charlotte</au><au>Savage, Kathleen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soil organic carbon fractions in the Great Plains of the United States: an application of mid-infrared spectroscopy</atitle><jtitle>Biogeochemistry</jtitle><stitle>Biogeochemistry</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>156</volume><issue>1</issue><spage>97</spage><epage>114</epage><pages>97-114</pages><issn>0168-2563</issn><eissn>1573-515X</eissn><abstract>Spectroscopy is a powerful means of increasing the availability of soil data necessary for understanding carbon cycling in a changing world. Here, we develop a calibration transfer methodology to appropriately apply an existing mid infrared (MIR) spectral library with analyte data on the distribution of soil organic carbon (SOC) into particulate (POC), mineral-associated (MAOC), and pyrogenic (PyC) forms to nearly 8000 soil samples collected in the Great Plains ecoregion of the United States. We then use this SOC fraction database in combination with a machine learning-based predictive soil mapping approach to explore the controls on the distribution of fractions through soil profiles and across the region. The relative abundance of each fraction had unique depth distribution profiles with POC fraction dropping exponentially with depth, the MAOC fraction having a broad distribution with a maxima at 35–50 cm, and the PyC fraction showed a slight subsurface maxima (10–20 cm) and then a steady decline with increasing depth. Within the Great Plains ecoregion, clay content was a strong control on the total amount and relative proportion of each fraction in both the surface and subsoil horizons. Sandy soils and soils in cool semiarid regions contained significantly more POC relative to the MAOC and PyC fractions. Cultivated soils had significantly less SOC than grassland soils with losses following a predictable pattern: POC > MAOC ≫ PyC. This SOC fraction database and resulting maps can now form the basis for improved representation of SOC dynamics in biogeochemical models.</abstract><cop>Cham</cop><pub>Springer Science + Business Media</pub><doi>10.1007/s10533-021-00755-1</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-3215-1706</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-2563 |
ispartof | Biogeochemistry, 2021-10, Vol.156 (1), p.97-114 |
issn | 0168-2563 1573-515X |
language | eng |
recordid | cdi_proquest_journals_2574554836 |
source | SpringerLink Journals |
subjects | Analytical methods Arid regions Arid zones Biogeosciences Carbon Carbon cycle Clay minerals Depth Distribution Earth and Environmental Science Earth Sciences Ecosystems Environmental Chemistry Grasslands Infrared analysis Infrared spectra Infrared spectroscopy Learning algorithms Life Sciences Machine learning Organic carbon Organic soils ORIGINAL PAPERS Particulate organic carbon Relative abundance Sandy soils Semi arid areas Semiarid zones Soil Soil mapping Soil profiles Soil properties Spectrum analysis Subsoils |
title | Soil organic carbon fractions in the Great Plains of the United States: an application of mid-infrared spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soil%20organic%20carbon%20fractions%20in%20the%20Great%20Plains%20of%20the%20United%20States:%20an%20application%20of%20mid-infrared%20spectroscopy&rft.jtitle=Biogeochemistry&rft.au=Sanderman,%20Jonathan&rft.date=2021-10-01&rft.volume=156&rft.issue=1&rft.spage=97&rft.epage=114&rft.pages=97-114&rft.issn=0168-2563&rft.eissn=1573-515X&rft_id=info:doi/10.1007/s10533-021-00755-1&rft_dat=%3Cjstor_proqu%3E48761833%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574554836&rft_id=info:pmid/&rft_jstor_id=48761833&rfr_iscdi=true |