A multi-country meta-analysis on the role of behavioural change in reducing energy consumption and CO2 emissions in residential buildings

Despite the importance of evaluating all mitigation options to inform policy decisions addressing climate change, a comprehensive analysis of household-scale interventions and their emissions reduction potential is missing. Here, we address this gap for interventions aimed at changing individual hou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature energy 2021-09, Vol.6 (9), p.925-932
Hauptverfasser: Khanna, Tarun M., Baiocchi, Giovanni, Callaghan, Max, Creutzig, Felix, Guias, Horia, Haddaway, Neal R., Hirth, Lion, Javaid, Aneeque, Koch, Nicolas, Laukemper, Sonja, Löschel, Andreas, Zamora Dominguez, Maria del Mar, Minx, Jan C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 932
container_issue 9
container_start_page 925
container_title Nature energy
container_volume 6
creator Khanna, Tarun M.
Baiocchi, Giovanni
Callaghan, Max
Creutzig, Felix
Guias, Horia
Haddaway, Neal R.
Hirth, Lion
Javaid, Aneeque
Koch, Nicolas
Laukemper, Sonja
Löschel, Andreas
Zamora Dominguez, Maria del Mar
Minx, Jan C.
description Despite the importance of evaluating all mitigation options to inform policy decisions addressing climate change, a comprehensive analysis of household-scale interventions and their emissions reduction potential is missing. Here, we address this gap for interventions aimed at changing individual households’ use of existing equipment, such as monetary incentives or feedback. We have performed a machine learning-assisted systematic review and meta-analysis to comparatively assess the effectiveness of these interventions in reducing energy demand in residential buildings. We extracted 360 individual effect sizes from 122 studies representing trials in 25 countries. Our meta-regression confirms that both monetary and non-monetary interventions reduce the energy consumption of households, but monetary incentives, of the sizes reported in the literature, tend to show on average a more pronounced effect. Deploying the right combinations of interventions increases the overall effectiveness. We have estimated a global carbon emissions reduction potential of 0.35 GtCO 2  yr −1 , although deploying the most effective packages of interventions could result in greater reduction. While modest, this potential should be viewed in conjunction with the need for de-risking mitigation pathways with energy-demand reductions. Behavioural interventions can reduce energy consumption and hence carbon emissions among households. Khanna et al. compare the effectiveness of different types of monetary and non-monetary household interventions using a machine learning-assisted meta-analysis, and examine the situations where each is most useful.
doi_str_mv 10.1038/s41560-021-00866-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2574548747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574548747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-e6a699fae3ec2c155b6c443899d9c9c4c1c2d3c213e7e8531c19bea75dd3f5bc3</originalsourceid><addsrcrecordid>eNp9kMtKw0AUhoMoWGpfwNWA69G5ZHJZluINCt3oephMTtopyaTOSaR9BN_a0Qi6cnUOh__74XxJcs3ZLWeyuMOUq4xRJjhlrMgyejxLZoKpguYqzc7_7JfJAnHPGBOlEKrgs-RjSbqxHRy1_eiHcCIdDIYab9oTOiS9J8MOSOhbIH1DKtiZd9ePwbTE7ozfAnGeBKhH6_yWgIewPRHbexy7w-AibXxNVhtBoHOI8YATgK4GP7hYU42urSOMV8lFY1qExc-cJ68P9y-rJ7rePD6vlmtqZSYHCpnJyrIxIMEKy5WqMpumsijLurSlTS23opZWcAk5FEpyy8sKTK7qWjaqsnKe3Ey9h9C_jYCD3seH4sOohcpTlRZ5mseUmFI29IgBGn0IrjPhpDnTX9b1ZF1H6_rbuj5GSE4QxnCUE36r_6E-AfIBiKk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574548747</pqid></control><display><type>article</type><title>A multi-country meta-analysis on the role of behavioural change in reducing energy consumption and CO2 emissions in residential buildings</title><source>SpringerLink Journals - AutoHoldings</source><creator>Khanna, Tarun M. ; Baiocchi, Giovanni ; Callaghan, Max ; Creutzig, Felix ; Guias, Horia ; Haddaway, Neal R. ; Hirth, Lion ; Javaid, Aneeque ; Koch, Nicolas ; Laukemper, Sonja ; Löschel, Andreas ; Zamora Dominguez, Maria del Mar ; Minx, Jan C.</creator><creatorcontrib>Khanna, Tarun M. ; Baiocchi, Giovanni ; Callaghan, Max ; Creutzig, Felix ; Guias, Horia ; Haddaway, Neal R. ; Hirth, Lion ; Javaid, Aneeque ; Koch, Nicolas ; Laukemper, Sonja ; Löschel, Andreas ; Zamora Dominguez, Maria del Mar ; Minx, Jan C.</creatorcontrib><description>Despite the importance of evaluating all mitigation options to inform policy decisions addressing climate change, a comprehensive analysis of household-scale interventions and their emissions reduction potential is missing. Here, we address this gap for interventions aimed at changing individual households’ use of existing equipment, such as monetary incentives or feedback. We have performed a machine learning-assisted systematic review and meta-analysis to comparatively assess the effectiveness of these interventions in reducing energy demand in residential buildings. We extracted 360 individual effect sizes from 122 studies representing trials in 25 countries. Our meta-regression confirms that both monetary and non-monetary interventions reduce the energy consumption of households, but monetary incentives, of the sizes reported in the literature, tend to show on average a more pronounced effect. Deploying the right combinations of interventions increases the overall effectiveness. We have estimated a global carbon emissions reduction potential of 0.35 GtCO 2  yr −1 , although deploying the most effective packages of interventions could result in greater reduction. While modest, this potential should be viewed in conjunction with the need for de-risking mitigation pathways with energy-demand reductions. Behavioural interventions can reduce energy consumption and hence carbon emissions among households. Khanna et al. compare the effectiveness of different types of monetary and non-monetary household interventions using a machine learning-assisted meta-analysis, and examine the situations where each is most useful.</description><identifier>ISSN: 2058-7546</identifier><identifier>EISSN: 2058-7546</identifier><identifier>DOI: 10.1038/s41560-021-00866-x</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>4014/159 ; 4014/477 ; 704/844/1759 ; 704/844/4066/4065 ; 704/844/682 ; Analysis ; Buildings ; Carbon ; Carbon dioxide ; Carbon dioxide emissions ; Climate action ; Climate change ; Decision analysis ; Economics and Management ; Electrode potentials ; Emissions ; Emissions control ; Energy ; Energy consumption ; Energy demand ; Energy Policy ; Energy Storage ; Energy Systems ; Households ; Incentives ; Learning algorithms ; Machine learning ; Meta-analysis ; Monetary incentives ; Reduction ; Renewable and Green Energy ; Residential areas ; Residential buildings ; Residential energy</subject><ispartof>Nature energy, 2021-09, Vol.6 (9), p.925-932</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021. corrected publication 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021. corrected publication 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-e6a699fae3ec2c155b6c443899d9c9c4c1c2d3c213e7e8531c19bea75dd3f5bc3</citedby><cites>FETCH-LOGICAL-c363t-e6a699fae3ec2c155b6c443899d9c9c4c1c2d3c213e7e8531c19bea75dd3f5bc3</cites><orcidid>0000-0003-3442-7689 ; 0000-0002-2862-0178 ; 0000-0002-3366-8053 ; 0000-0002-0319-7561 ; 0000-0003-0453-2701 ; 0000-0002-7775-034X ; 0000-0001-8292-8758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41560-021-00866-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41560-021-00866-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Khanna, Tarun M.</creatorcontrib><creatorcontrib>Baiocchi, Giovanni</creatorcontrib><creatorcontrib>Callaghan, Max</creatorcontrib><creatorcontrib>Creutzig, Felix</creatorcontrib><creatorcontrib>Guias, Horia</creatorcontrib><creatorcontrib>Haddaway, Neal R.</creatorcontrib><creatorcontrib>Hirth, Lion</creatorcontrib><creatorcontrib>Javaid, Aneeque</creatorcontrib><creatorcontrib>Koch, Nicolas</creatorcontrib><creatorcontrib>Laukemper, Sonja</creatorcontrib><creatorcontrib>Löschel, Andreas</creatorcontrib><creatorcontrib>Zamora Dominguez, Maria del Mar</creatorcontrib><creatorcontrib>Minx, Jan C.</creatorcontrib><title>A multi-country meta-analysis on the role of behavioural change in reducing energy consumption and CO2 emissions in residential buildings</title><title>Nature energy</title><addtitle>Nat Energy</addtitle><description>Despite the importance of evaluating all mitigation options to inform policy decisions addressing climate change, a comprehensive analysis of household-scale interventions and their emissions reduction potential is missing. Here, we address this gap for interventions aimed at changing individual households’ use of existing equipment, such as monetary incentives or feedback. We have performed a machine learning-assisted systematic review and meta-analysis to comparatively assess the effectiveness of these interventions in reducing energy demand in residential buildings. We extracted 360 individual effect sizes from 122 studies representing trials in 25 countries. Our meta-regression confirms that both monetary and non-monetary interventions reduce the energy consumption of households, but monetary incentives, of the sizes reported in the literature, tend to show on average a more pronounced effect. Deploying the right combinations of interventions increases the overall effectiveness. We have estimated a global carbon emissions reduction potential of 0.35 GtCO 2  yr −1 , although deploying the most effective packages of interventions could result in greater reduction. While modest, this potential should be viewed in conjunction with the need for de-risking mitigation pathways with energy-demand reductions. Behavioural interventions can reduce energy consumption and hence carbon emissions among households. Khanna et al. compare the effectiveness of different types of monetary and non-monetary household interventions using a machine learning-assisted meta-analysis, and examine the situations where each is most useful.</description><subject>4014/159</subject><subject>4014/477</subject><subject>704/844/1759</subject><subject>704/844/4066/4065</subject><subject>704/844/682</subject><subject>Analysis</subject><subject>Buildings</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Climate action</subject><subject>Climate change</subject><subject>Decision analysis</subject><subject>Economics and Management</subject><subject>Electrode potentials</subject><subject>Emissions</subject><subject>Emissions control</subject><subject>Energy</subject><subject>Energy consumption</subject><subject>Energy demand</subject><subject>Energy Policy</subject><subject>Energy Storage</subject><subject>Energy Systems</subject><subject>Households</subject><subject>Incentives</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Meta-analysis</subject><subject>Monetary incentives</subject><subject>Reduction</subject><subject>Renewable and Green Energy</subject><subject>Residential areas</subject><subject>Residential buildings</subject><subject>Residential energy</subject><issn>2058-7546</issn><issn>2058-7546</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMtKw0AUhoMoWGpfwNWA69G5ZHJZluINCt3oephMTtopyaTOSaR9BN_a0Qi6cnUOh__74XxJcs3ZLWeyuMOUq4xRJjhlrMgyejxLZoKpguYqzc7_7JfJAnHPGBOlEKrgs-RjSbqxHRy1_eiHcCIdDIYab9oTOiS9J8MOSOhbIH1DKtiZd9ePwbTE7ozfAnGeBKhH6_yWgIewPRHbexy7w-AibXxNVhtBoHOI8YATgK4GP7hYU42urSOMV8lFY1qExc-cJ68P9y-rJ7rePD6vlmtqZSYHCpnJyrIxIMEKy5WqMpumsijLurSlTS23opZWcAk5FEpyy8sKTK7qWjaqsnKe3Ey9h9C_jYCD3seH4sOohcpTlRZ5mseUmFI29IgBGn0IrjPhpDnTX9b1ZF1H6_rbuj5GSE4QxnCUE36r_6E-AfIBiKk</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Khanna, Tarun M.</creator><creator>Baiocchi, Giovanni</creator><creator>Callaghan, Max</creator><creator>Creutzig, Felix</creator><creator>Guias, Horia</creator><creator>Haddaway, Neal R.</creator><creator>Hirth, Lion</creator><creator>Javaid, Aneeque</creator><creator>Koch, Nicolas</creator><creator>Laukemper, Sonja</creator><creator>Löschel, Andreas</creator><creator>Zamora Dominguez, Maria del Mar</creator><creator>Minx, Jan C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3442-7689</orcidid><orcidid>https://orcid.org/0000-0002-2862-0178</orcidid><orcidid>https://orcid.org/0000-0002-3366-8053</orcidid><orcidid>https://orcid.org/0000-0002-0319-7561</orcidid><orcidid>https://orcid.org/0000-0003-0453-2701</orcidid><orcidid>https://orcid.org/0000-0002-7775-034X</orcidid><orcidid>https://orcid.org/0000-0001-8292-8758</orcidid></search><sort><creationdate>20210901</creationdate><title>A multi-country meta-analysis on the role of behavioural change in reducing energy consumption and CO2 emissions in residential buildings</title><author>Khanna, Tarun M. ; Baiocchi, Giovanni ; Callaghan, Max ; Creutzig, Felix ; Guias, Horia ; Haddaway, Neal R. ; Hirth, Lion ; Javaid, Aneeque ; Koch, Nicolas ; Laukemper, Sonja ; Löschel, Andreas ; Zamora Dominguez, Maria del Mar ; Minx, Jan C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-e6a699fae3ec2c155b6c443899d9c9c4c1c2d3c213e7e8531c19bea75dd3f5bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>4014/159</topic><topic>4014/477</topic><topic>704/844/1759</topic><topic>704/844/4066/4065</topic><topic>704/844/682</topic><topic>Analysis</topic><topic>Buildings</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Climate action</topic><topic>Climate change</topic><topic>Decision analysis</topic><topic>Economics and Management</topic><topic>Electrode potentials</topic><topic>Emissions</topic><topic>Emissions control</topic><topic>Energy</topic><topic>Energy consumption</topic><topic>Energy demand</topic><topic>Energy Policy</topic><topic>Energy Storage</topic><topic>Energy Systems</topic><topic>Households</topic><topic>Incentives</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Meta-analysis</topic><topic>Monetary incentives</topic><topic>Reduction</topic><topic>Renewable and Green Energy</topic><topic>Residential areas</topic><topic>Residential buildings</topic><topic>Residential energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khanna, Tarun M.</creatorcontrib><creatorcontrib>Baiocchi, Giovanni</creatorcontrib><creatorcontrib>Callaghan, Max</creatorcontrib><creatorcontrib>Creutzig, Felix</creatorcontrib><creatorcontrib>Guias, Horia</creatorcontrib><creatorcontrib>Haddaway, Neal R.</creatorcontrib><creatorcontrib>Hirth, Lion</creatorcontrib><creatorcontrib>Javaid, Aneeque</creatorcontrib><creatorcontrib>Koch, Nicolas</creatorcontrib><creatorcontrib>Laukemper, Sonja</creatorcontrib><creatorcontrib>Löschel, Andreas</creatorcontrib><creatorcontrib>Zamora Dominguez, Maria del Mar</creatorcontrib><creatorcontrib>Minx, Jan C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khanna, Tarun M.</au><au>Baiocchi, Giovanni</au><au>Callaghan, Max</au><au>Creutzig, Felix</au><au>Guias, Horia</au><au>Haddaway, Neal R.</au><au>Hirth, Lion</au><au>Javaid, Aneeque</au><au>Koch, Nicolas</au><au>Laukemper, Sonja</au><au>Löschel, Andreas</au><au>Zamora Dominguez, Maria del Mar</au><au>Minx, Jan C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-country meta-analysis on the role of behavioural change in reducing energy consumption and CO2 emissions in residential buildings</atitle><jtitle>Nature energy</jtitle><stitle>Nat Energy</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>6</volume><issue>9</issue><spage>925</spage><epage>932</epage><pages>925-932</pages><issn>2058-7546</issn><eissn>2058-7546</eissn><abstract>Despite the importance of evaluating all mitigation options to inform policy decisions addressing climate change, a comprehensive analysis of household-scale interventions and their emissions reduction potential is missing. Here, we address this gap for interventions aimed at changing individual households’ use of existing equipment, such as monetary incentives or feedback. We have performed a machine learning-assisted systematic review and meta-analysis to comparatively assess the effectiveness of these interventions in reducing energy demand in residential buildings. We extracted 360 individual effect sizes from 122 studies representing trials in 25 countries. Our meta-regression confirms that both monetary and non-monetary interventions reduce the energy consumption of households, but monetary incentives, of the sizes reported in the literature, tend to show on average a more pronounced effect. Deploying the right combinations of interventions increases the overall effectiveness. We have estimated a global carbon emissions reduction potential of 0.35 GtCO 2  yr −1 , although deploying the most effective packages of interventions could result in greater reduction. While modest, this potential should be viewed in conjunction with the need for de-risking mitigation pathways with energy-demand reductions. Behavioural interventions can reduce energy consumption and hence carbon emissions among households. Khanna et al. compare the effectiveness of different types of monetary and non-monetary household interventions using a machine learning-assisted meta-analysis, and examine the situations where each is most useful.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41560-021-00866-x</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3442-7689</orcidid><orcidid>https://orcid.org/0000-0002-2862-0178</orcidid><orcidid>https://orcid.org/0000-0002-3366-8053</orcidid><orcidid>https://orcid.org/0000-0002-0319-7561</orcidid><orcidid>https://orcid.org/0000-0003-0453-2701</orcidid><orcidid>https://orcid.org/0000-0002-7775-034X</orcidid><orcidid>https://orcid.org/0000-0001-8292-8758</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2058-7546
ispartof Nature energy, 2021-09, Vol.6 (9), p.925-932
issn 2058-7546
2058-7546
language eng
recordid cdi_proquest_journals_2574548747
source SpringerLink Journals - AutoHoldings
subjects 4014/159
4014/477
704/844/1759
704/844/4066/4065
704/844/682
Analysis
Buildings
Carbon
Carbon dioxide
Carbon dioxide emissions
Climate action
Climate change
Decision analysis
Economics and Management
Electrode potentials
Emissions
Emissions control
Energy
Energy consumption
Energy demand
Energy Policy
Energy Storage
Energy Systems
Households
Incentives
Learning algorithms
Machine learning
Meta-analysis
Monetary incentives
Reduction
Renewable and Green Energy
Residential areas
Residential buildings
Residential energy
title A multi-country meta-analysis on the role of behavioural change in reducing energy consumption and CO2 emissions in residential buildings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T11%3A59%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-country%20meta-analysis%20on%20the%20role%20of%20behavioural%20change%20in%20reducing%20energy%20consumption%20and%20CO2%20emissions%20in%20residential%20buildings&rft.jtitle=Nature%20energy&rft.au=Khanna,%20Tarun%20M.&rft.date=2021-09-01&rft.volume=6&rft.issue=9&rft.spage=925&rft.epage=932&rft.pages=925-932&rft.issn=2058-7546&rft.eissn=2058-7546&rft_id=info:doi/10.1038/s41560-021-00866-x&rft_dat=%3Cproquest_cross%3E2574548747%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574548747&rft_id=info:pmid/&rfr_iscdi=true