A multi-country meta-analysis on the role of behavioural change in reducing energy consumption and CO2 emissions in residential buildings
Despite the importance of evaluating all mitigation options to inform policy decisions addressing climate change, a comprehensive analysis of household-scale interventions and their emissions reduction potential is missing. Here, we address this gap for interventions aimed at changing individual hou...
Gespeichert in:
Veröffentlicht in: | Nature energy 2021-09, Vol.6 (9), p.925-932 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 932 |
---|---|
container_issue | 9 |
container_start_page | 925 |
container_title | Nature energy |
container_volume | 6 |
creator | Khanna, Tarun M. Baiocchi, Giovanni Callaghan, Max Creutzig, Felix Guias, Horia Haddaway, Neal R. Hirth, Lion Javaid, Aneeque Koch, Nicolas Laukemper, Sonja Löschel, Andreas Zamora Dominguez, Maria del Mar Minx, Jan C. |
description | Despite the importance of evaluating all mitigation options to inform policy decisions addressing climate change, a comprehensive analysis of household-scale interventions and their emissions reduction potential is missing. Here, we address this gap for interventions aimed at changing individual households’ use of existing equipment, such as monetary incentives or feedback. We have performed a machine learning-assisted systematic review and meta-analysis to comparatively assess the effectiveness of these interventions in reducing energy demand in residential buildings. We extracted 360 individual effect sizes from 122 studies representing trials in 25 countries. Our meta-regression confirms that both monetary and non-monetary interventions reduce the energy consumption of households, but monetary incentives, of the sizes reported in the literature, tend to show on average a more pronounced effect. Deploying the right combinations of interventions increases the overall effectiveness. We have estimated a global carbon emissions reduction potential of 0.35 GtCO
2
yr
−1
, although deploying the most effective packages of interventions could result in greater reduction. While modest, this potential should be viewed in conjunction with the need for de-risking mitigation pathways with energy-demand reductions.
Behavioural interventions can reduce energy consumption and hence carbon emissions among households. Khanna et al. compare the effectiveness of different types of monetary and non-monetary household interventions using a machine learning-assisted meta-analysis, and examine the situations where each is most useful. |
doi_str_mv | 10.1038/s41560-021-00866-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2574548747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574548747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-e6a699fae3ec2c155b6c443899d9c9c4c1c2d3c213e7e8531c19bea75dd3f5bc3</originalsourceid><addsrcrecordid>eNp9kMtKw0AUhoMoWGpfwNWA69G5ZHJZluINCt3oephMTtopyaTOSaR9BN_a0Qi6cnUOh__74XxJcs3ZLWeyuMOUq4xRJjhlrMgyejxLZoKpguYqzc7_7JfJAnHPGBOlEKrgs-RjSbqxHRy1_eiHcCIdDIYab9oTOiS9J8MOSOhbIH1DKtiZd9ePwbTE7ozfAnGeBKhH6_yWgIewPRHbexy7w-AibXxNVhtBoHOI8YATgK4GP7hYU42urSOMV8lFY1qExc-cJ68P9y-rJ7rePD6vlmtqZSYHCpnJyrIxIMEKy5WqMpumsijLurSlTS23opZWcAk5FEpyy8sKTK7qWjaqsnKe3Ey9h9C_jYCD3seH4sOohcpTlRZ5mseUmFI29IgBGn0IrjPhpDnTX9b1ZF1H6_rbuj5GSE4QxnCUE36r_6E-AfIBiKk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574548747</pqid></control><display><type>article</type><title>A multi-country meta-analysis on the role of behavioural change in reducing energy consumption and CO2 emissions in residential buildings</title><source>SpringerLink Journals - AutoHoldings</source><creator>Khanna, Tarun M. ; Baiocchi, Giovanni ; Callaghan, Max ; Creutzig, Felix ; Guias, Horia ; Haddaway, Neal R. ; Hirth, Lion ; Javaid, Aneeque ; Koch, Nicolas ; Laukemper, Sonja ; Löschel, Andreas ; Zamora Dominguez, Maria del Mar ; Minx, Jan C.</creator><creatorcontrib>Khanna, Tarun M. ; Baiocchi, Giovanni ; Callaghan, Max ; Creutzig, Felix ; Guias, Horia ; Haddaway, Neal R. ; Hirth, Lion ; Javaid, Aneeque ; Koch, Nicolas ; Laukemper, Sonja ; Löschel, Andreas ; Zamora Dominguez, Maria del Mar ; Minx, Jan C.</creatorcontrib><description>Despite the importance of evaluating all mitigation options to inform policy decisions addressing climate change, a comprehensive analysis of household-scale interventions and their emissions reduction potential is missing. Here, we address this gap for interventions aimed at changing individual households’ use of existing equipment, such as monetary incentives or feedback. We have performed a machine learning-assisted systematic review and meta-analysis to comparatively assess the effectiveness of these interventions in reducing energy demand in residential buildings. We extracted 360 individual effect sizes from 122 studies representing trials in 25 countries. Our meta-regression confirms that both monetary and non-monetary interventions reduce the energy consumption of households, but monetary incentives, of the sizes reported in the literature, tend to show on average a more pronounced effect. Deploying the right combinations of interventions increases the overall effectiveness. We have estimated a global carbon emissions reduction potential of 0.35 GtCO
2
yr
−1
, although deploying the most effective packages of interventions could result in greater reduction. While modest, this potential should be viewed in conjunction with the need for de-risking mitigation pathways with energy-demand reductions.
Behavioural interventions can reduce energy consumption and hence carbon emissions among households. Khanna et al. compare the effectiveness of different types of monetary and non-monetary household interventions using a machine learning-assisted meta-analysis, and examine the situations where each is most useful.</description><identifier>ISSN: 2058-7546</identifier><identifier>EISSN: 2058-7546</identifier><identifier>DOI: 10.1038/s41560-021-00866-x</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>4014/159 ; 4014/477 ; 704/844/1759 ; 704/844/4066/4065 ; 704/844/682 ; Analysis ; Buildings ; Carbon ; Carbon dioxide ; Carbon dioxide emissions ; Climate action ; Climate change ; Decision analysis ; Economics and Management ; Electrode potentials ; Emissions ; Emissions control ; Energy ; Energy consumption ; Energy demand ; Energy Policy ; Energy Storage ; Energy Systems ; Households ; Incentives ; Learning algorithms ; Machine learning ; Meta-analysis ; Monetary incentives ; Reduction ; Renewable and Green Energy ; Residential areas ; Residential buildings ; Residential energy</subject><ispartof>Nature energy, 2021-09, Vol.6 (9), p.925-932</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021. corrected publication 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021. corrected publication 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-e6a699fae3ec2c155b6c443899d9c9c4c1c2d3c213e7e8531c19bea75dd3f5bc3</citedby><cites>FETCH-LOGICAL-c363t-e6a699fae3ec2c155b6c443899d9c9c4c1c2d3c213e7e8531c19bea75dd3f5bc3</cites><orcidid>0000-0003-3442-7689 ; 0000-0002-2862-0178 ; 0000-0002-3366-8053 ; 0000-0002-0319-7561 ; 0000-0003-0453-2701 ; 0000-0002-7775-034X ; 0000-0001-8292-8758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41560-021-00866-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41560-021-00866-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Khanna, Tarun M.</creatorcontrib><creatorcontrib>Baiocchi, Giovanni</creatorcontrib><creatorcontrib>Callaghan, Max</creatorcontrib><creatorcontrib>Creutzig, Felix</creatorcontrib><creatorcontrib>Guias, Horia</creatorcontrib><creatorcontrib>Haddaway, Neal R.</creatorcontrib><creatorcontrib>Hirth, Lion</creatorcontrib><creatorcontrib>Javaid, Aneeque</creatorcontrib><creatorcontrib>Koch, Nicolas</creatorcontrib><creatorcontrib>Laukemper, Sonja</creatorcontrib><creatorcontrib>Löschel, Andreas</creatorcontrib><creatorcontrib>Zamora Dominguez, Maria del Mar</creatorcontrib><creatorcontrib>Minx, Jan C.</creatorcontrib><title>A multi-country meta-analysis on the role of behavioural change in reducing energy consumption and CO2 emissions in residential buildings</title><title>Nature energy</title><addtitle>Nat Energy</addtitle><description>Despite the importance of evaluating all mitigation options to inform policy decisions addressing climate change, a comprehensive analysis of household-scale interventions and their emissions reduction potential is missing. Here, we address this gap for interventions aimed at changing individual households’ use of existing equipment, such as monetary incentives or feedback. We have performed a machine learning-assisted systematic review and meta-analysis to comparatively assess the effectiveness of these interventions in reducing energy demand in residential buildings. We extracted 360 individual effect sizes from 122 studies representing trials in 25 countries. Our meta-regression confirms that both monetary and non-monetary interventions reduce the energy consumption of households, but monetary incentives, of the sizes reported in the literature, tend to show on average a more pronounced effect. Deploying the right combinations of interventions increases the overall effectiveness. We have estimated a global carbon emissions reduction potential of 0.35 GtCO
2
yr
−1
, although deploying the most effective packages of interventions could result in greater reduction. While modest, this potential should be viewed in conjunction with the need for de-risking mitigation pathways with energy-demand reductions.
Behavioural interventions can reduce energy consumption and hence carbon emissions among households. Khanna et al. compare the effectiveness of different types of monetary and non-monetary household interventions using a machine learning-assisted meta-analysis, and examine the situations where each is most useful.</description><subject>4014/159</subject><subject>4014/477</subject><subject>704/844/1759</subject><subject>704/844/4066/4065</subject><subject>704/844/682</subject><subject>Analysis</subject><subject>Buildings</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Climate action</subject><subject>Climate change</subject><subject>Decision analysis</subject><subject>Economics and Management</subject><subject>Electrode potentials</subject><subject>Emissions</subject><subject>Emissions control</subject><subject>Energy</subject><subject>Energy consumption</subject><subject>Energy demand</subject><subject>Energy Policy</subject><subject>Energy Storage</subject><subject>Energy Systems</subject><subject>Households</subject><subject>Incentives</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Meta-analysis</subject><subject>Monetary incentives</subject><subject>Reduction</subject><subject>Renewable and Green Energy</subject><subject>Residential areas</subject><subject>Residential buildings</subject><subject>Residential energy</subject><issn>2058-7546</issn><issn>2058-7546</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMtKw0AUhoMoWGpfwNWA69G5ZHJZluINCt3oephMTtopyaTOSaR9BN_a0Qi6cnUOh__74XxJcs3ZLWeyuMOUq4xRJjhlrMgyejxLZoKpguYqzc7_7JfJAnHPGBOlEKrgs-RjSbqxHRy1_eiHcCIdDIYab9oTOiS9J8MOSOhbIH1DKtiZd9ePwbTE7ozfAnGeBKhH6_yWgIewPRHbexy7w-AibXxNVhtBoHOI8YATgK4GP7hYU42urSOMV8lFY1qExc-cJ68P9y-rJ7rePD6vlmtqZSYHCpnJyrIxIMEKy5WqMpumsijLurSlTS23opZWcAk5FEpyy8sKTK7qWjaqsnKe3Ey9h9C_jYCD3seH4sOohcpTlRZ5mseUmFI29IgBGn0IrjPhpDnTX9b1ZF1H6_rbuj5GSE4QxnCUE36r_6E-AfIBiKk</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Khanna, Tarun M.</creator><creator>Baiocchi, Giovanni</creator><creator>Callaghan, Max</creator><creator>Creutzig, Felix</creator><creator>Guias, Horia</creator><creator>Haddaway, Neal R.</creator><creator>Hirth, Lion</creator><creator>Javaid, Aneeque</creator><creator>Koch, Nicolas</creator><creator>Laukemper, Sonja</creator><creator>Löschel, Andreas</creator><creator>Zamora Dominguez, Maria del Mar</creator><creator>Minx, Jan C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3442-7689</orcidid><orcidid>https://orcid.org/0000-0002-2862-0178</orcidid><orcidid>https://orcid.org/0000-0002-3366-8053</orcidid><orcidid>https://orcid.org/0000-0002-0319-7561</orcidid><orcidid>https://orcid.org/0000-0003-0453-2701</orcidid><orcidid>https://orcid.org/0000-0002-7775-034X</orcidid><orcidid>https://orcid.org/0000-0001-8292-8758</orcidid></search><sort><creationdate>20210901</creationdate><title>A multi-country meta-analysis on the role of behavioural change in reducing energy consumption and CO2 emissions in residential buildings</title><author>Khanna, Tarun M. ; Baiocchi, Giovanni ; Callaghan, Max ; Creutzig, Felix ; Guias, Horia ; Haddaway, Neal R. ; Hirth, Lion ; Javaid, Aneeque ; Koch, Nicolas ; Laukemper, Sonja ; Löschel, Andreas ; Zamora Dominguez, Maria del Mar ; Minx, Jan C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-e6a699fae3ec2c155b6c443899d9c9c4c1c2d3c213e7e8531c19bea75dd3f5bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>4014/159</topic><topic>4014/477</topic><topic>704/844/1759</topic><topic>704/844/4066/4065</topic><topic>704/844/682</topic><topic>Analysis</topic><topic>Buildings</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Climate action</topic><topic>Climate change</topic><topic>Decision analysis</topic><topic>Economics and Management</topic><topic>Electrode potentials</topic><topic>Emissions</topic><topic>Emissions control</topic><topic>Energy</topic><topic>Energy consumption</topic><topic>Energy demand</topic><topic>Energy Policy</topic><topic>Energy Storage</topic><topic>Energy Systems</topic><topic>Households</topic><topic>Incentives</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Meta-analysis</topic><topic>Monetary incentives</topic><topic>Reduction</topic><topic>Renewable and Green Energy</topic><topic>Residential areas</topic><topic>Residential buildings</topic><topic>Residential energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khanna, Tarun M.</creatorcontrib><creatorcontrib>Baiocchi, Giovanni</creatorcontrib><creatorcontrib>Callaghan, Max</creatorcontrib><creatorcontrib>Creutzig, Felix</creatorcontrib><creatorcontrib>Guias, Horia</creatorcontrib><creatorcontrib>Haddaway, Neal R.</creatorcontrib><creatorcontrib>Hirth, Lion</creatorcontrib><creatorcontrib>Javaid, Aneeque</creatorcontrib><creatorcontrib>Koch, Nicolas</creatorcontrib><creatorcontrib>Laukemper, Sonja</creatorcontrib><creatorcontrib>Löschel, Andreas</creatorcontrib><creatorcontrib>Zamora Dominguez, Maria del Mar</creatorcontrib><creatorcontrib>Minx, Jan C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khanna, Tarun M.</au><au>Baiocchi, Giovanni</au><au>Callaghan, Max</au><au>Creutzig, Felix</au><au>Guias, Horia</au><au>Haddaway, Neal R.</au><au>Hirth, Lion</au><au>Javaid, Aneeque</au><au>Koch, Nicolas</au><au>Laukemper, Sonja</au><au>Löschel, Andreas</au><au>Zamora Dominguez, Maria del Mar</au><au>Minx, Jan C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-country meta-analysis on the role of behavioural change in reducing energy consumption and CO2 emissions in residential buildings</atitle><jtitle>Nature energy</jtitle><stitle>Nat Energy</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>6</volume><issue>9</issue><spage>925</spage><epage>932</epage><pages>925-932</pages><issn>2058-7546</issn><eissn>2058-7546</eissn><abstract>Despite the importance of evaluating all mitigation options to inform policy decisions addressing climate change, a comprehensive analysis of household-scale interventions and their emissions reduction potential is missing. Here, we address this gap for interventions aimed at changing individual households’ use of existing equipment, such as monetary incentives or feedback. We have performed a machine learning-assisted systematic review and meta-analysis to comparatively assess the effectiveness of these interventions in reducing energy demand in residential buildings. We extracted 360 individual effect sizes from 122 studies representing trials in 25 countries. Our meta-regression confirms that both monetary and non-monetary interventions reduce the energy consumption of households, but monetary incentives, of the sizes reported in the literature, tend to show on average a more pronounced effect. Deploying the right combinations of interventions increases the overall effectiveness. We have estimated a global carbon emissions reduction potential of 0.35 GtCO
2
yr
−1
, although deploying the most effective packages of interventions could result in greater reduction. While modest, this potential should be viewed in conjunction with the need for de-risking mitigation pathways with energy-demand reductions.
Behavioural interventions can reduce energy consumption and hence carbon emissions among households. Khanna et al. compare the effectiveness of different types of monetary and non-monetary household interventions using a machine learning-assisted meta-analysis, and examine the situations where each is most useful.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41560-021-00866-x</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3442-7689</orcidid><orcidid>https://orcid.org/0000-0002-2862-0178</orcidid><orcidid>https://orcid.org/0000-0002-3366-8053</orcidid><orcidid>https://orcid.org/0000-0002-0319-7561</orcidid><orcidid>https://orcid.org/0000-0003-0453-2701</orcidid><orcidid>https://orcid.org/0000-0002-7775-034X</orcidid><orcidid>https://orcid.org/0000-0001-8292-8758</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-7546 |
ispartof | Nature energy, 2021-09, Vol.6 (9), p.925-932 |
issn | 2058-7546 2058-7546 |
language | eng |
recordid | cdi_proquest_journals_2574548747 |
source | SpringerLink Journals - AutoHoldings |
subjects | 4014/159 4014/477 704/844/1759 704/844/4066/4065 704/844/682 Analysis Buildings Carbon Carbon dioxide Carbon dioxide emissions Climate action Climate change Decision analysis Economics and Management Electrode potentials Emissions Emissions control Energy Energy consumption Energy demand Energy Policy Energy Storage Energy Systems Households Incentives Learning algorithms Machine learning Meta-analysis Monetary incentives Reduction Renewable and Green Energy Residential areas Residential buildings Residential energy |
title | A multi-country meta-analysis on the role of behavioural change in reducing energy consumption and CO2 emissions in residential buildings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T11%3A59%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-country%20meta-analysis%20on%20the%20role%20of%20behavioural%20change%20in%20reducing%20energy%20consumption%20and%20CO2%20emissions%20in%20residential%20buildings&rft.jtitle=Nature%20energy&rft.au=Khanna,%20Tarun%20M.&rft.date=2021-09-01&rft.volume=6&rft.issue=9&rft.spage=925&rft.epage=932&rft.pages=925-932&rft.issn=2058-7546&rft.eissn=2058-7546&rft_id=info:doi/10.1038/s41560-021-00866-x&rft_dat=%3Cproquest_cross%3E2574548747%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574548747&rft_id=info:pmid/&rfr_iscdi=true |