The CMS Data Acquisition - Architectures for the Phase-2 Upgrade

The upgraded High Luminosity LHC, after the third Long Shutdown (LS3), will provide an instantaneous luminosity of 7.5 × 1034 cm−2s−1 (levelled), at the price of extreme pileup of up to 200 interactions per crossing. In LS3, the CMS Detector will also undergo a major upgrade to prepare for the phase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2017-10, Vol.898 (3), p.32019
Hauptverfasser: Andre, J-M, Behrens, U, Branson, J, Brummer, P, Chaze, O, Cittolin, S, Contescu, C, Craigs, B G, Darlea, G-L, Deldicque, C, Demiragli, Z, Dobson, M, Doualot, N, Erhan, S, Fulcher, J F, Gigi, D, Gładki, M, Glege, F, Gomez-Ceballos, G, Hegeman, J, Holzner, A, Janulis, M, Jimenez-Estupiñán, R, Masetti, L, Meijers, F, Meschi, E, Mommsen, R K, Morovic, S, O'Dell, V, Orsini, L, Paus, C, Petrova, P, Pieri, M, Racz, A, Reis, T, Sakulin, H, Schwick, C, Simelevicius, D, Zejdl, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 32019
container_title Journal of physics. Conference series
container_volume 898
creator Andre, J-M
Behrens, U
Branson, J
Brummer, P
Chaze, O
Cittolin, S
Contescu, C
Craigs, B G
Darlea, G-L
Deldicque, C
Demiragli, Z
Dobson, M
Doualot, N
Erhan, S
Fulcher, J F
Gigi, D
Gładki, M
Glege, F
Gomez-Ceballos, G
Hegeman, J
Holzner, A
Janulis, M
Jimenez-Estupiñán, R
Masetti, L
Meijers, F
Meschi, E
Mommsen, R K
Morovic, S
O'Dell, V
Orsini, L
Paus, C
Petrova, P
Pieri, M
Racz, A
Reis, T
Sakulin, H
Schwick, C
Simelevicius, D
Zejdl, P
description The upgraded High Luminosity LHC, after the third Long Shutdown (LS3), will provide an instantaneous luminosity of 7.5 × 1034 cm−2s−1 (levelled), at the price of extreme pileup of up to 200 interactions per crossing. In LS3, the CMS Detector will also undergo a major upgrade to prepare for the phase-2 of the LHC physics program, starting around 2025. The upgraded detector will be read out at an unprecedented data rate of up to 50 Tb/s and an event rate of 750 kHz. Complete events will be analysed by software algorithms running on standard processing nodes, and selected events will be stored permanently at a rate of up to 10 kHz for offline processing and analysis. In this paper we discuss the baseline design of the DAQ and HLT systems for the phase-2, taking into account the projected evolution of high speed network fabrics for event building and distribution, and the anticipated performance of general purpose CPU. Implications on hardware and infrastructure requirements for the DAQ "data center" are analysed. Emerging technologies for data reduction are considered. Novel possible approaches to event building and online processing, inspired by trending developments in other areas of computing dealing with large masses of data, are also examined. We conclude by discussing the opportunities offered by reading out and processing parts of the detector, wherever the front-end electronics allows, at the machine clock rate (40 MHz). This idea presents interesting challenges and its physics potential should be studied.
doi_str_mv 10.1088/1742-6596/898/3/032019
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2574545701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574545701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3529-3407216693fc1934c585e9f498d848e163e85fe08bec0aa38282f2f8fee908553</originalsourceid><addsrcrecordid>eNqFkE1LxDAURYMoOI7-BQm6rs1n-7JzGD9hRMGZdaiZxHbQppO0C_-9KRVd-jZ5kHMfl4PQOSVXlADktBQsK6QqclCQ85xwRqg6QLPfj8PfHeAYncS4I4SnKWfoel1bvHx6xTdVX-GF2Q9NbPrGtzjDi2DqpremH4KN2PmA-wS_1FW0GcOb7j1UW3uKjlz1Ee3ZzztHm7vb9fIhWz3fPy4Xq8xwyVTGBSkZLQrFnaGKCyNBWuWEgi0IsLTgFqSzBN6sIVXFgQFzzIGzVhGQks_RxXTXx77R0YzFauPbNvXTVDAquUrQ5QR1we8HG3u980NoUy_NZCmkkCWhiSomygQfY7BOd6H5rMKXpkSPSvVoS4_mdFKquZ6UpiCbgo3v_i7_E_oG20B0Ww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574545701</pqid></control><display><type>article</type><title>The CMS Data Acquisition - Architectures for the Phase-2 Upgrade</title><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Andre, J-M ; Behrens, U ; Branson, J ; Brummer, P ; Chaze, O ; Cittolin, S ; Contescu, C ; Craigs, B G ; Darlea, G-L ; Deldicque, C ; Demiragli, Z ; Dobson, M ; Doualot, N ; Erhan, S ; Fulcher, J F ; Gigi, D ; Gładki, M ; Glege, F ; Gomez-Ceballos, G ; Hegeman, J ; Holzner, A ; Janulis, M ; Jimenez-Estupiñán, R ; Masetti, L ; Meijers, F ; Meschi, E ; Mommsen, R K ; Morovic, S ; O'Dell, V ; Orsini, L ; Paus, C ; Petrova, P ; Pieri, M ; Racz, A ; Reis, T ; Sakulin, H ; Schwick, C ; Simelevicius, D ; Zejdl, P</creator><creatorcontrib>Andre, J-M ; Behrens, U ; Branson, J ; Brummer, P ; Chaze, O ; Cittolin, S ; Contescu, C ; Craigs, B G ; Darlea, G-L ; Deldicque, C ; Demiragli, Z ; Dobson, M ; Doualot, N ; Erhan, S ; Fulcher, J F ; Gigi, D ; Gładki, M ; Glege, F ; Gomez-Ceballos, G ; Hegeman, J ; Holzner, A ; Janulis, M ; Jimenez-Estupiñán, R ; Masetti, L ; Meijers, F ; Meschi, E ; Mommsen, R K ; Morovic, S ; O'Dell, V ; Orsini, L ; Paus, C ; Petrova, P ; Pieri, M ; Racz, A ; Reis, T ; Sakulin, H ; Schwick, C ; Simelevicius, D ; Zejdl, P ; Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)</creatorcontrib><description>The upgraded High Luminosity LHC, after the third Long Shutdown (LS3), will provide an instantaneous luminosity of 7.5 × 1034 cm−2s−1 (levelled), at the price of extreme pileup of up to 200 interactions per crossing. In LS3, the CMS Detector will also undergo a major upgrade to prepare for the phase-2 of the LHC physics program, starting around 2025. The upgraded detector will be read out at an unprecedented data rate of up to 50 Tb/s and an event rate of 750 kHz. Complete events will be analysed by software algorithms running on standard processing nodes, and selected events will be stored permanently at a rate of up to 10 kHz for offline processing and analysis. In this paper we discuss the baseline design of the DAQ and HLT systems for the phase-2, taking into account the projected evolution of high speed network fabrics for event building and distribution, and the anticipated performance of general purpose CPU. Implications on hardware and infrastructure requirements for the DAQ "data center" are analysed. Emerging technologies for data reduction are considered. Novel possible approaches to event building and online processing, inspired by trending developments in other areas of computing dealing with large masses of data, are also examined. We conclude by discussing the opportunities offered by reading out and processing parts of the detector, wherever the front-end electronics allows, at the machine clock rate (40 MHz). This idea presents interesting challenges and its physics potential should be studied.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/898/3/032019</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Data centers ; Data reduction ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; Large Hadron Collider ; Luminosity ; New technology ; Physics ; Sensors ; Shutdowns</subject><ispartof>Journal of physics. Conference series, 2017-10, Vol.898 (3), p.32019</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3529-3407216693fc1934c585e9f498d848e163e85fe08bec0aa38282f2f8fee908553</citedby><cites>FETCH-LOGICAL-c3529-3407216693fc1934c585e9f498d848e163e85fe08bec0aa38282f2f8fee908553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/898/3/032019/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,315,781,785,886,27929,27930,38873,38895,53845,53872</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1421539$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Andre, J-M</creatorcontrib><creatorcontrib>Behrens, U</creatorcontrib><creatorcontrib>Branson, J</creatorcontrib><creatorcontrib>Brummer, P</creatorcontrib><creatorcontrib>Chaze, O</creatorcontrib><creatorcontrib>Cittolin, S</creatorcontrib><creatorcontrib>Contescu, C</creatorcontrib><creatorcontrib>Craigs, B G</creatorcontrib><creatorcontrib>Darlea, G-L</creatorcontrib><creatorcontrib>Deldicque, C</creatorcontrib><creatorcontrib>Demiragli, Z</creatorcontrib><creatorcontrib>Dobson, M</creatorcontrib><creatorcontrib>Doualot, N</creatorcontrib><creatorcontrib>Erhan, S</creatorcontrib><creatorcontrib>Fulcher, J F</creatorcontrib><creatorcontrib>Gigi, D</creatorcontrib><creatorcontrib>Gładki, M</creatorcontrib><creatorcontrib>Glege, F</creatorcontrib><creatorcontrib>Gomez-Ceballos, G</creatorcontrib><creatorcontrib>Hegeman, J</creatorcontrib><creatorcontrib>Holzner, A</creatorcontrib><creatorcontrib>Janulis, M</creatorcontrib><creatorcontrib>Jimenez-Estupiñán, R</creatorcontrib><creatorcontrib>Masetti, L</creatorcontrib><creatorcontrib>Meijers, F</creatorcontrib><creatorcontrib>Meschi, E</creatorcontrib><creatorcontrib>Mommsen, R K</creatorcontrib><creatorcontrib>Morovic, S</creatorcontrib><creatorcontrib>O'Dell, V</creatorcontrib><creatorcontrib>Orsini, L</creatorcontrib><creatorcontrib>Paus, C</creatorcontrib><creatorcontrib>Petrova, P</creatorcontrib><creatorcontrib>Pieri, M</creatorcontrib><creatorcontrib>Racz, A</creatorcontrib><creatorcontrib>Reis, T</creatorcontrib><creatorcontrib>Sakulin, H</creatorcontrib><creatorcontrib>Schwick, C</creatorcontrib><creatorcontrib>Simelevicius, D</creatorcontrib><creatorcontrib>Zejdl, P</creatorcontrib><creatorcontrib>Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)</creatorcontrib><title>The CMS Data Acquisition - Architectures for the Phase-2 Upgrade</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The upgraded High Luminosity LHC, after the third Long Shutdown (LS3), will provide an instantaneous luminosity of 7.5 × 1034 cm−2s−1 (levelled), at the price of extreme pileup of up to 200 interactions per crossing. In LS3, the CMS Detector will also undergo a major upgrade to prepare for the phase-2 of the LHC physics program, starting around 2025. The upgraded detector will be read out at an unprecedented data rate of up to 50 Tb/s and an event rate of 750 kHz. Complete events will be analysed by software algorithms running on standard processing nodes, and selected events will be stored permanently at a rate of up to 10 kHz for offline processing and analysis. In this paper we discuss the baseline design of the DAQ and HLT systems for the phase-2, taking into account the projected evolution of high speed network fabrics for event building and distribution, and the anticipated performance of general purpose CPU. Implications on hardware and infrastructure requirements for the DAQ "data center" are analysed. Emerging technologies for data reduction are considered. Novel possible approaches to event building and online processing, inspired by trending developments in other areas of computing dealing with large masses of data, are also examined. We conclude by discussing the opportunities offered by reading out and processing parts of the detector, wherever the front-end electronics allows, at the machine clock rate (40 MHz). This idea presents interesting challenges and its physics potential should be studied.</description><subject>Algorithms</subject><subject>Data centers</subject><subject>Data reduction</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>Large Hadron Collider</subject><subject>Luminosity</subject><subject>New technology</subject><subject>Physics</subject><subject>Sensors</subject><subject>Shutdowns</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkE1LxDAURYMoOI7-BQm6rs1n-7JzGD9hRMGZdaiZxHbQppO0C_-9KRVd-jZ5kHMfl4PQOSVXlADktBQsK6QqclCQ85xwRqg6QLPfj8PfHeAYncS4I4SnKWfoel1bvHx6xTdVX-GF2Q9NbPrGtzjDi2DqpremH4KN2PmA-wS_1FW0GcOb7j1UW3uKjlz1Ee3ZzztHm7vb9fIhWz3fPy4Xq8xwyVTGBSkZLQrFnaGKCyNBWuWEgi0IsLTgFqSzBN6sIVXFgQFzzIGzVhGQks_RxXTXx77R0YzFauPbNvXTVDAquUrQ5QR1we8HG3u980NoUy_NZCmkkCWhiSomygQfY7BOd6H5rMKXpkSPSvVoS4_mdFKquZ6UpiCbgo3v_i7_E_oG20B0Ww</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Andre, J-M</creator><creator>Behrens, U</creator><creator>Branson, J</creator><creator>Brummer, P</creator><creator>Chaze, O</creator><creator>Cittolin, S</creator><creator>Contescu, C</creator><creator>Craigs, B G</creator><creator>Darlea, G-L</creator><creator>Deldicque, C</creator><creator>Demiragli, Z</creator><creator>Dobson, M</creator><creator>Doualot, N</creator><creator>Erhan, S</creator><creator>Fulcher, J F</creator><creator>Gigi, D</creator><creator>Gładki, M</creator><creator>Glege, F</creator><creator>Gomez-Ceballos, G</creator><creator>Hegeman, J</creator><creator>Holzner, A</creator><creator>Janulis, M</creator><creator>Jimenez-Estupiñán, R</creator><creator>Masetti, L</creator><creator>Meijers, F</creator><creator>Meschi, E</creator><creator>Mommsen, R K</creator><creator>Morovic, S</creator><creator>O'Dell, V</creator><creator>Orsini, L</creator><creator>Paus, C</creator><creator>Petrova, P</creator><creator>Pieri, M</creator><creator>Racz, A</creator><creator>Reis, T</creator><creator>Sakulin, H</creator><creator>Schwick, C</creator><creator>Simelevicius, D</creator><creator>Zejdl, P</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20171001</creationdate><title>The CMS Data Acquisition - Architectures for the Phase-2 Upgrade</title><author>Andre, J-M ; Behrens, U ; Branson, J ; Brummer, P ; Chaze, O ; Cittolin, S ; Contescu, C ; Craigs, B G ; Darlea, G-L ; Deldicque, C ; Demiragli, Z ; Dobson, M ; Doualot, N ; Erhan, S ; Fulcher, J F ; Gigi, D ; Gładki, M ; Glege, F ; Gomez-Ceballos, G ; Hegeman, J ; Holzner, A ; Janulis, M ; Jimenez-Estupiñán, R ; Masetti, L ; Meijers, F ; Meschi, E ; Mommsen, R K ; Morovic, S ; O'Dell, V ; Orsini, L ; Paus, C ; Petrova, P ; Pieri, M ; Racz, A ; Reis, T ; Sakulin, H ; Schwick, C ; Simelevicius, D ; Zejdl, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3529-3407216693fc1934c585e9f498d848e163e85fe08bec0aa38282f2f8fee908553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Data centers</topic><topic>Data reduction</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>Large Hadron Collider</topic><topic>Luminosity</topic><topic>New technology</topic><topic>Physics</topic><topic>Sensors</topic><topic>Shutdowns</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andre, J-M</creatorcontrib><creatorcontrib>Behrens, U</creatorcontrib><creatorcontrib>Branson, J</creatorcontrib><creatorcontrib>Brummer, P</creatorcontrib><creatorcontrib>Chaze, O</creatorcontrib><creatorcontrib>Cittolin, S</creatorcontrib><creatorcontrib>Contescu, C</creatorcontrib><creatorcontrib>Craigs, B G</creatorcontrib><creatorcontrib>Darlea, G-L</creatorcontrib><creatorcontrib>Deldicque, C</creatorcontrib><creatorcontrib>Demiragli, Z</creatorcontrib><creatorcontrib>Dobson, M</creatorcontrib><creatorcontrib>Doualot, N</creatorcontrib><creatorcontrib>Erhan, S</creatorcontrib><creatorcontrib>Fulcher, J F</creatorcontrib><creatorcontrib>Gigi, D</creatorcontrib><creatorcontrib>Gładki, M</creatorcontrib><creatorcontrib>Glege, F</creatorcontrib><creatorcontrib>Gomez-Ceballos, G</creatorcontrib><creatorcontrib>Hegeman, J</creatorcontrib><creatorcontrib>Holzner, A</creatorcontrib><creatorcontrib>Janulis, M</creatorcontrib><creatorcontrib>Jimenez-Estupiñán, R</creatorcontrib><creatorcontrib>Masetti, L</creatorcontrib><creatorcontrib>Meijers, F</creatorcontrib><creatorcontrib>Meschi, E</creatorcontrib><creatorcontrib>Mommsen, R K</creatorcontrib><creatorcontrib>Morovic, S</creatorcontrib><creatorcontrib>O'Dell, V</creatorcontrib><creatorcontrib>Orsini, L</creatorcontrib><creatorcontrib>Paus, C</creatorcontrib><creatorcontrib>Petrova, P</creatorcontrib><creatorcontrib>Pieri, M</creatorcontrib><creatorcontrib>Racz, A</creatorcontrib><creatorcontrib>Reis, T</creatorcontrib><creatorcontrib>Sakulin, H</creatorcontrib><creatorcontrib>Schwick, C</creatorcontrib><creatorcontrib>Simelevicius, D</creatorcontrib><creatorcontrib>Zejdl, P</creatorcontrib><creatorcontrib>Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andre, J-M</au><au>Behrens, U</au><au>Branson, J</au><au>Brummer, P</au><au>Chaze, O</au><au>Cittolin, S</au><au>Contescu, C</au><au>Craigs, B G</au><au>Darlea, G-L</au><au>Deldicque, C</au><au>Demiragli, Z</au><au>Dobson, M</au><au>Doualot, N</au><au>Erhan, S</au><au>Fulcher, J F</au><au>Gigi, D</au><au>Gładki, M</au><au>Glege, F</au><au>Gomez-Ceballos, G</au><au>Hegeman, J</au><au>Holzner, A</au><au>Janulis, M</au><au>Jimenez-Estupiñán, R</au><au>Masetti, L</au><au>Meijers, F</au><au>Meschi, E</au><au>Mommsen, R K</au><au>Morovic, S</au><au>O'Dell, V</au><au>Orsini, L</au><au>Paus, C</au><au>Petrova, P</au><au>Pieri, M</au><au>Racz, A</au><au>Reis, T</au><au>Sakulin, H</au><au>Schwick, C</au><au>Simelevicius, D</au><au>Zejdl, P</au><aucorp>Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The CMS Data Acquisition - Architectures for the Phase-2 Upgrade</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>898</volume><issue>3</issue><spage>32019</spage><pages>32019-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The upgraded High Luminosity LHC, after the third Long Shutdown (LS3), will provide an instantaneous luminosity of 7.5 × 1034 cm−2s−1 (levelled), at the price of extreme pileup of up to 200 interactions per crossing. In LS3, the CMS Detector will also undergo a major upgrade to prepare for the phase-2 of the LHC physics program, starting around 2025. The upgraded detector will be read out at an unprecedented data rate of up to 50 Tb/s and an event rate of 750 kHz. Complete events will be analysed by software algorithms running on standard processing nodes, and selected events will be stored permanently at a rate of up to 10 kHz for offline processing and analysis. In this paper we discuss the baseline design of the DAQ and HLT systems for the phase-2, taking into account the projected evolution of high speed network fabrics for event building and distribution, and the anticipated performance of general purpose CPU. Implications on hardware and infrastructure requirements for the DAQ "data center" are analysed. Emerging technologies for data reduction are considered. Novel possible approaches to event building and online processing, inspired by trending developments in other areas of computing dealing with large masses of data, are also examined. We conclude by discussing the opportunities offered by reading out and processing parts of the detector, wherever the front-end electronics allows, at the machine clock rate (40 MHz). This idea presents interesting challenges and its physics potential should be studied.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/898/3/032019</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2017-10, Vol.898 (3), p.32019
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2574545701
source Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Algorithms
Data centers
Data reduction
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
Large Hadron Collider
Luminosity
New technology
Physics
Sensors
Shutdowns
title The CMS Data Acquisition - Architectures for the Phase-2 Upgrade
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T08%3A05%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20CMS%20Data%20Acquisition%20-%20Architectures%20for%20the%20Phase-2%20Upgrade&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Andre,%20J-M&rft.aucorp=Fermi%20National%20Accelerator%20Lab.%20(FNAL),%20Batavia,%20IL%20(United%20States)&rft.date=2017-10-01&rft.volume=898&rft.issue=3&rft.spage=32019&rft.pages=32019-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/898/3/032019&rft_dat=%3Cproquest_iop_j%3E2574545701%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574545701&rft_id=info:pmid/&rfr_iscdi=true