Prediction of flow field and mass flow rate in a solar chimney at different heights using ANFIS technique
Natural ventilation for buildings using solar chimney is increasingly attracting the attention of many researchers. Many techniques have been introduced to research on solar chimneys such as experimental, analytical, computational methods. Recently, with the development of computer technology, compu...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2406 |
creator | Doan, Thinh N. Huynh, Minh-Thu T. Nguyen, Y. Q. |
description | Natural ventilation for buildings using solar chimney is increasingly attracting the attention of many researchers. Many techniques have been introduced to research on solar chimneys such as experimental, analytical, computational methods. Recently, with the development of computer technology, computational method, particularly, Computational Fluid Dynamics (CFD) becomes more common and widely applied in solar chimney, but this method still exists limitation. One of the main limitations is using much computational source. In this study, CFD was combined with Adaptive Neuro-Fuzzy Inference System (ANFIS) to prevail against this limitation when predicting flow field and mass flow rate in a chimney. In particular, the fluid flow and heat transfer in chimney were simulated with CFD to create dataset. Two ANFIS models were built, trained, and validated using dataset from CFD. After the training, ANFIS models can predict flow temperature, velocity and induced mass flow rate, respectively, with R-squared (R2) of 0.97, 0.997 and 0.9996 for training set, while 0.9715, 0.994 and 0.9996 for testing set; similarly, root mean squared error (RMSE) are 0.032, 1.703, 3.45x10−5 for training set, and 0.042, 1.713 and 2.95x10−5 for testing set. It is expected that the combination of CFD and ANFIS can estimate more different scenarios but using less computational time. |
doi_str_mv | 10.1063/5.0066482 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2574521479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574521479</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1682-a75233261ef657c5fcd390820d48d42ec13a97d682de26dfd04fef687ba0efdf3</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKsH_8EL3oSt-c7usRRbC0UFFbwtcZN0U7bZmqRI_71b2tPA8DDDDEL3BE8IluxJTDCWkpf0Ao2IEKRQkshLNMK44gXl7Psa3aS0wZhWSpUj5N-jNb7Jvg_QO3Bd_wfO286ADga2OqWTF3W24ANoSH2nIzSt3wZ7AJ3BeOdstCFDa_26zQn2yYc1TF_nyw_ItmmD_93bW3TldJfs3VnH6Gv-_Dl7KVZvi-Vsuip2RJa00EpQxqgk1kmhGuEawypcUmx4aTi1DWG6UmZAjaXSOIO5G9BS_WhsnXFsjB5OubvYD7Up15t-H8NQWVOhuKCEq2qgHk9UanzWx_n1Lvqtjoea4Pp4ZS3q85XsH7LXZeo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2574521479</pqid></control><display><type>conference_proceeding</type><title>Prediction of flow field and mass flow rate in a solar chimney at different heights using ANFIS technique</title><source>American Institute of Physics (AIP) Journals</source><creator>Doan, Thinh N. ; Huynh, Minh-Thu T. ; Nguyen, Y. Q.</creator><contributor>Van, Trung Chu ; Nguyen, Hoc Thang ; Narvios, Wilen Melsedec O. ; Ngo, Thi Thu Trang ; Nguyen, Xuan Huan ; Nursanty, Eko ; Pepito, Joseph ; Galindo, Ronald ; Truong, Van Mon ; Hai, Dinh ; Ngo, Thi Hoa ; Rahaman, Hafizur ; Dang, Quan Nguyen ; Phuoc, Hyunh ; Do, Thi Hung Dao ; Pham, Trung Kien ; Lam, Thi My Duong ; Dinh, Sy Khang ; Ton, That Lang</contributor><creatorcontrib>Doan, Thinh N. ; Huynh, Minh-Thu T. ; Nguyen, Y. Q. ; Van, Trung Chu ; Nguyen, Hoc Thang ; Narvios, Wilen Melsedec O. ; Ngo, Thi Thu Trang ; Nguyen, Xuan Huan ; Nursanty, Eko ; Pepito, Joseph ; Galindo, Ronald ; Truong, Van Mon ; Hai, Dinh ; Ngo, Thi Hoa ; Rahaman, Hafizur ; Dang, Quan Nguyen ; Phuoc, Hyunh ; Do, Thi Hung Dao ; Pham, Trung Kien ; Lam, Thi My Duong ; Dinh, Sy Khang ; Ton, That Lang</creatorcontrib><description>Natural ventilation for buildings using solar chimney is increasingly attracting the attention of many researchers. Many techniques have been introduced to research on solar chimneys such as experimental, analytical, computational methods. Recently, with the development of computer technology, computational method, particularly, Computational Fluid Dynamics (CFD) becomes more common and widely applied in solar chimney, but this method still exists limitation. One of the main limitations is using much computational source. In this study, CFD was combined with Adaptive Neuro-Fuzzy Inference System (ANFIS) to prevail against this limitation when predicting flow field and mass flow rate in a chimney. In particular, the fluid flow and heat transfer in chimney were simulated with CFD to create dataset. Two ANFIS models were built, trained, and validated using dataset from CFD. After the training, ANFIS models can predict flow temperature, velocity and induced mass flow rate, respectively, with R-squared (R2) of 0.97, 0.997 and 0.9996 for training set, while 0.9715, 0.994 and 0.9996 for testing set; similarly, root mean squared error (RMSE) are 0.032, 1.703, 3.45x10−5 for training set, and 0.042, 1.713 and 2.95x10−5 for testing set. It is expected that the combination of CFD and ANFIS can estimate more different scenarios but using less computational time.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0066482</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Adaptive systems ; Artificial neural networks ; Computational fluid dynamics ; Computing time ; Datasets ; Flow control ; Fluid flow ; Fuzzy logic ; Mass flow rate ; Mathematical models ; Root-mean-square errors ; Solar chimneys ; Training</subject><ispartof>AIP conference proceedings, 2021, Vol.2406 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0066482$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76126</link.rule.ids></links><search><contributor>Van, Trung Chu</contributor><contributor>Nguyen, Hoc Thang</contributor><contributor>Narvios, Wilen Melsedec O.</contributor><contributor>Ngo, Thi Thu Trang</contributor><contributor>Nguyen, Xuan Huan</contributor><contributor>Nursanty, Eko</contributor><contributor>Pepito, Joseph</contributor><contributor>Galindo, Ronald</contributor><contributor>Truong, Van Mon</contributor><contributor>Hai, Dinh</contributor><contributor>Ngo, Thi Hoa</contributor><contributor>Rahaman, Hafizur</contributor><contributor>Dang, Quan Nguyen</contributor><contributor>Phuoc, Hyunh</contributor><contributor>Do, Thi Hung Dao</contributor><contributor>Pham, Trung Kien</contributor><contributor>Lam, Thi My Duong</contributor><contributor>Dinh, Sy Khang</contributor><contributor>Ton, That Lang</contributor><creatorcontrib>Doan, Thinh N.</creatorcontrib><creatorcontrib>Huynh, Minh-Thu T.</creatorcontrib><creatorcontrib>Nguyen, Y. Q.</creatorcontrib><title>Prediction of flow field and mass flow rate in a solar chimney at different heights using ANFIS technique</title><title>AIP conference proceedings</title><description>Natural ventilation for buildings using solar chimney is increasingly attracting the attention of many researchers. Many techniques have been introduced to research on solar chimneys such as experimental, analytical, computational methods. Recently, with the development of computer technology, computational method, particularly, Computational Fluid Dynamics (CFD) becomes more common and widely applied in solar chimney, but this method still exists limitation. One of the main limitations is using much computational source. In this study, CFD was combined with Adaptive Neuro-Fuzzy Inference System (ANFIS) to prevail against this limitation when predicting flow field and mass flow rate in a chimney. In particular, the fluid flow and heat transfer in chimney were simulated with CFD to create dataset. Two ANFIS models were built, trained, and validated using dataset from CFD. After the training, ANFIS models can predict flow temperature, velocity and induced mass flow rate, respectively, with R-squared (R2) of 0.97, 0.997 and 0.9996 for training set, while 0.9715, 0.994 and 0.9996 for testing set; similarly, root mean squared error (RMSE) are 0.032, 1.703, 3.45x10−5 for training set, and 0.042, 1.713 and 2.95x10−5 for testing set. It is expected that the combination of CFD and ANFIS can estimate more different scenarios but using less computational time.</description><subject>Adaptive systems</subject><subject>Artificial neural networks</subject><subject>Computational fluid dynamics</subject><subject>Computing time</subject><subject>Datasets</subject><subject>Flow control</subject><subject>Fluid flow</subject><subject>Fuzzy logic</subject><subject>Mass flow rate</subject><subject>Mathematical models</subject><subject>Root-mean-square errors</subject><subject>Solar chimneys</subject><subject>Training</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1LAzEYhIMoWKsH_8EL3oSt-c7usRRbC0UFFbwtcZN0U7bZmqRI_71b2tPA8DDDDEL3BE8IluxJTDCWkpf0Ao2IEKRQkshLNMK44gXl7Psa3aS0wZhWSpUj5N-jNb7Jvg_QO3Bd_wfO286ADga2OqWTF3W24ANoSH2nIzSt3wZ7AJ3BeOdstCFDa_26zQn2yYc1TF_nyw_ItmmD_93bW3TldJfs3VnH6Gv-_Dl7KVZvi-Vsuip2RJa00EpQxqgk1kmhGuEawypcUmx4aTi1DWG6UmZAjaXSOIO5G9BS_WhsnXFsjB5OubvYD7Up15t-H8NQWVOhuKCEq2qgHk9UanzWx_n1Lvqtjoea4Pp4ZS3q85XsH7LXZeo</recordid><startdate>20210920</startdate><enddate>20210920</enddate><creator>Doan, Thinh N.</creator><creator>Huynh, Minh-Thu T.</creator><creator>Nguyen, Y. Q.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210920</creationdate><title>Prediction of flow field and mass flow rate in a solar chimney at different heights using ANFIS technique</title><author>Doan, Thinh N. ; Huynh, Minh-Thu T. ; Nguyen, Y. Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1682-a75233261ef657c5fcd390820d48d42ec13a97d682de26dfd04fef687ba0efdf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive systems</topic><topic>Artificial neural networks</topic><topic>Computational fluid dynamics</topic><topic>Computing time</topic><topic>Datasets</topic><topic>Flow control</topic><topic>Fluid flow</topic><topic>Fuzzy logic</topic><topic>Mass flow rate</topic><topic>Mathematical models</topic><topic>Root-mean-square errors</topic><topic>Solar chimneys</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doan, Thinh N.</creatorcontrib><creatorcontrib>Huynh, Minh-Thu T.</creatorcontrib><creatorcontrib>Nguyen, Y. Q.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doan, Thinh N.</au><au>Huynh, Minh-Thu T.</au><au>Nguyen, Y. Q.</au><au>Van, Trung Chu</au><au>Nguyen, Hoc Thang</au><au>Narvios, Wilen Melsedec O.</au><au>Ngo, Thi Thu Trang</au><au>Nguyen, Xuan Huan</au><au>Nursanty, Eko</au><au>Pepito, Joseph</au><au>Galindo, Ronald</au><au>Truong, Van Mon</au><au>Hai, Dinh</au><au>Ngo, Thi Hoa</au><au>Rahaman, Hafizur</au><au>Dang, Quan Nguyen</au><au>Phuoc, Hyunh</au><au>Do, Thi Hung Dao</au><au>Pham, Trung Kien</au><au>Lam, Thi My Duong</au><au>Dinh, Sy Khang</au><au>Ton, That Lang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Prediction of flow field and mass flow rate in a solar chimney at different heights using ANFIS technique</atitle><btitle>AIP conference proceedings</btitle><date>2021-09-20</date><risdate>2021</risdate><volume>2406</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Natural ventilation for buildings using solar chimney is increasingly attracting the attention of many researchers. Many techniques have been introduced to research on solar chimneys such as experimental, analytical, computational methods. Recently, with the development of computer technology, computational method, particularly, Computational Fluid Dynamics (CFD) becomes more common and widely applied in solar chimney, but this method still exists limitation. One of the main limitations is using much computational source. In this study, CFD was combined with Adaptive Neuro-Fuzzy Inference System (ANFIS) to prevail against this limitation when predicting flow field and mass flow rate in a chimney. In particular, the fluid flow and heat transfer in chimney were simulated with CFD to create dataset. Two ANFIS models were built, trained, and validated using dataset from CFD. After the training, ANFIS models can predict flow temperature, velocity and induced mass flow rate, respectively, with R-squared (R2) of 0.97, 0.997 and 0.9996 for training set, while 0.9715, 0.994 and 0.9996 for testing set; similarly, root mean squared error (RMSE) are 0.032, 1.703, 3.45x10−5 for training set, and 0.042, 1.713 and 2.95x10−5 for testing set. It is expected that the combination of CFD and ANFIS can estimate more different scenarios but using less computational time.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0066482</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2021, Vol.2406 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2574521479 |
source | American Institute of Physics (AIP) Journals |
subjects | Adaptive systems Artificial neural networks Computational fluid dynamics Computing time Datasets Flow control Fluid flow Fuzzy logic Mass flow rate Mathematical models Root-mean-square errors Solar chimneys Training |
title | Prediction of flow field and mass flow rate in a solar chimney at different heights using ANFIS technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T07%3A07%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Prediction%20of%20flow%20field%20and%20mass%20flow%20rate%20in%20a%20solar%20chimney%20at%20different%20heights%20using%20ANFIS%20technique&rft.btitle=AIP%20conference%20proceedings&rft.au=Doan,%20Thinh%20N.&rft.date=2021-09-20&rft.volume=2406&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0066482&rft_dat=%3Cproquest_scita%3E2574521479%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574521479&rft_id=info:pmid/&rfr_iscdi=true |