Numerical simulation of heat transfer at unsteady heat generation in falling wavy liquid films
The mathematical model which allows the calculation of the wave surface profile as well as velocity and temperature fields has been presented. The numerical simulation of heat transfer in falling wavy films of liquid nitrogen has been performed. The dependencies of boiling expectation time and total...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2017-11, Vol.925 (1), p.12015 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12015 |
container_title | Journal of physics. Conference series |
container_volume | 925 |
creator | Chernyavskiy, A N Pavlenko, A N |
description | The mathematical model which allows the calculation of the wave surface profile as well as velocity and temperature fields has been presented. The numerical simulation of heat transfer in falling wavy films of liquid nitrogen has been performed. The dependencies of boiling expectation time and total local evaporation time on heat flux density for different inlet Reynolds numbers have been calculated. The regime map which describes the different mechanisms of film decay was obtained by summing up the simulation results. The results of numerical simulation are in satisfactory agreement with the experimental data. |
doi_str_mv | 10.1088/1742-6596/925/1/012015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2574453184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574453184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-454dde2a19ba1c93c414443afe893872cebfcc86970680abf43d6290f950c1a13</originalsourceid><addsrcrecordid>eNqFkNtKAzEQhhdRsFZfQQJeebFujrvJpRSPFBXUW0OaTWrKnprsKn17U1YqguDczMD_zQx8SXKK4AWCnGeooDjNmcgzgVmGMogwRGwvmeyC_d3M-WFyFMIKQhKrmCRvD0NtvNOqAsHVQ6V61zagteDdqB70XjXBGg_iPDShN6rcjMnSNMaPsGuAVVXlmiX4VB8bULn14EpgXVWH4-QgZsGcfPdp8np99TK7TeePN3ezy3mqCWN9ShktS4MVEguFtCCaIkopUdZwQXiBtVlYrXkuCphzqBaWkjLHAlrBoEYKkWlyNt7tfLseTOjlqh18E19KzApKGUGcRiofKe3bELyxsvOuVn4jEZRbl3KrSW6VyehSIjm6jIvn46Jru5_L90-z51-c7EobWfwH-8-DL0hvhAY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574453184</pqid></control><display><type>article</type><title>Numerical simulation of heat transfer at unsteady heat generation in falling wavy liquid films</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chernyavskiy, A N ; Pavlenko, A N</creator><creatorcontrib>Chernyavskiy, A N ; Pavlenko, A N</creatorcontrib><description>The mathematical model which allows the calculation of the wave surface profile as well as velocity and temperature fields has been presented. The numerical simulation of heat transfer in falling wavy films of liquid nitrogen has been performed. The dependencies of boiling expectation time and total local evaporation time on heat flux density for different inlet Reynolds numbers have been calculated. The regime map which describes the different mechanisms of film decay was obtained by summing up the simulation results. The results of numerical simulation are in satisfactory agreement with the experimental data.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/925/1/012015</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Fluid flow ; Flux density ; Heat flux ; Heat generation ; Heat transfer ; Liquid nitrogen ; Mathematical models ; Physics ; Reynolds number ; Simulation</subject><ispartof>Journal of physics. Conference series, 2017-11, Vol.925 (1), p.12015</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c355t-454dde2a19ba1c93c414443afe893872cebfcc86970680abf43d6290f950c1a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/925/1/012015/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Chernyavskiy, A N</creatorcontrib><creatorcontrib>Pavlenko, A N</creatorcontrib><title>Numerical simulation of heat transfer at unsteady heat generation in falling wavy liquid films</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The mathematical model which allows the calculation of the wave surface profile as well as velocity and temperature fields has been presented. The numerical simulation of heat transfer in falling wavy films of liquid nitrogen has been performed. The dependencies of boiling expectation time and total local evaporation time on heat flux density for different inlet Reynolds numbers have been calculated. The regime map which describes the different mechanisms of film decay was obtained by summing up the simulation results. The results of numerical simulation are in satisfactory agreement with the experimental data.</description><subject>Fluid flow</subject><subject>Flux density</subject><subject>Heat flux</subject><subject>Heat generation</subject><subject>Heat transfer</subject><subject>Liquid nitrogen</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Reynolds number</subject><subject>Simulation</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkNtKAzEQhhdRsFZfQQJeebFujrvJpRSPFBXUW0OaTWrKnprsKn17U1YqguDczMD_zQx8SXKK4AWCnGeooDjNmcgzgVmGMogwRGwvmeyC_d3M-WFyFMIKQhKrmCRvD0NtvNOqAsHVQ6V61zagteDdqB70XjXBGg_iPDShN6rcjMnSNMaPsGuAVVXlmiX4VB8bULn14EpgXVWH4-QgZsGcfPdp8np99TK7TeePN3ezy3mqCWN9ShktS4MVEguFtCCaIkopUdZwQXiBtVlYrXkuCphzqBaWkjLHAlrBoEYKkWlyNt7tfLseTOjlqh18E19KzApKGUGcRiofKe3bELyxsvOuVn4jEZRbl3KrSW6VyehSIjm6jIvn46Jru5_L90-z51-c7EobWfwH-8-DL0hvhAY</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Chernyavskiy, A N</creator><creator>Pavlenko, A N</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20171101</creationdate><title>Numerical simulation of heat transfer at unsteady heat generation in falling wavy liquid films</title><author>Chernyavskiy, A N ; Pavlenko, A N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-454dde2a19ba1c93c414443afe893872cebfcc86970680abf43d6290f950c1a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Fluid flow</topic><topic>Flux density</topic><topic>Heat flux</topic><topic>Heat generation</topic><topic>Heat transfer</topic><topic>Liquid nitrogen</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Reynolds number</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chernyavskiy, A N</creatorcontrib><creatorcontrib>Pavlenko, A N</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chernyavskiy, A N</au><au>Pavlenko, A N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of heat transfer at unsteady heat generation in falling wavy liquid films</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>925</volume><issue>1</issue><spage>12015</spage><pages>12015-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The mathematical model which allows the calculation of the wave surface profile as well as velocity and temperature fields has been presented. The numerical simulation of heat transfer in falling wavy films of liquid nitrogen has been performed. The dependencies of boiling expectation time and total local evaporation time on heat flux density for different inlet Reynolds numbers have been calculated. The regime map which describes the different mechanisms of film decay was obtained by summing up the simulation results. The results of numerical simulation are in satisfactory agreement with the experimental data.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/925/1/012015</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2017-11, Vol.925 (1), p.12015 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2574453184 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Fluid flow Flux density Heat flux Heat generation Heat transfer Liquid nitrogen Mathematical models Physics Reynolds number Simulation |
title | Numerical simulation of heat transfer at unsteady heat generation in falling wavy liquid films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A47%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20heat%20transfer%20at%20unsteady%20heat%20generation%20in%20falling%20wavy%20liquid%20films&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Chernyavskiy,%20A%20N&rft.date=2017-11-01&rft.volume=925&rft.issue=1&rft.spage=12015&rft.pages=12015-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/925/1/012015&rft_dat=%3Cproquest_iop_j%3E2574453184%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574453184&rft_id=info:pmid/&rfr_iscdi=true |