Numerical simulation of heat transfer at unsteady heat generation in falling wavy liquid films

The mathematical model which allows the calculation of the wave surface profile as well as velocity and temperature fields has been presented. The numerical simulation of heat transfer in falling wavy films of liquid nitrogen has been performed. The dependencies of boiling expectation time and total...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2017-11, Vol.925 (1), p.12015
Hauptverfasser: Chernyavskiy, A N, Pavlenko, A N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12015
container_title Journal of physics. Conference series
container_volume 925
creator Chernyavskiy, A N
Pavlenko, A N
description The mathematical model which allows the calculation of the wave surface profile as well as velocity and temperature fields has been presented. The numerical simulation of heat transfer in falling wavy films of liquid nitrogen has been performed. The dependencies of boiling expectation time and total local evaporation time on heat flux density for different inlet Reynolds numbers have been calculated. The regime map which describes the different mechanisms of film decay was obtained by summing up the simulation results. The results of numerical simulation are in satisfactory agreement with the experimental data.
doi_str_mv 10.1088/1742-6596/925/1/012015
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2574453184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574453184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-454dde2a19ba1c93c414443afe893872cebfcc86970680abf43d6290f950c1a13</originalsourceid><addsrcrecordid>eNqFkNtKAzEQhhdRsFZfQQJeebFujrvJpRSPFBXUW0OaTWrKnprsKn17U1YqguDczMD_zQx8SXKK4AWCnGeooDjNmcgzgVmGMogwRGwvmeyC_d3M-WFyFMIKQhKrmCRvD0NtvNOqAsHVQ6V61zagteDdqB70XjXBGg_iPDShN6rcjMnSNMaPsGuAVVXlmiX4VB8bULn14EpgXVWH4-QgZsGcfPdp8np99TK7TeePN3ezy3mqCWN9ShktS4MVEguFtCCaIkopUdZwQXiBtVlYrXkuCphzqBaWkjLHAlrBoEYKkWlyNt7tfLseTOjlqh18E19KzApKGUGcRiofKe3bELyxsvOuVn4jEZRbl3KrSW6VyehSIjm6jIvn46Jru5_L90-z51-c7EobWfwH-8-DL0hvhAY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574453184</pqid></control><display><type>article</type><title>Numerical simulation of heat transfer at unsteady heat generation in falling wavy liquid films</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chernyavskiy, A N ; Pavlenko, A N</creator><creatorcontrib>Chernyavskiy, A N ; Pavlenko, A N</creatorcontrib><description>The mathematical model which allows the calculation of the wave surface profile as well as velocity and temperature fields has been presented. The numerical simulation of heat transfer in falling wavy films of liquid nitrogen has been performed. The dependencies of boiling expectation time and total local evaporation time on heat flux density for different inlet Reynolds numbers have been calculated. The regime map which describes the different mechanisms of film decay was obtained by summing up the simulation results. The results of numerical simulation are in satisfactory agreement with the experimental data.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/925/1/012015</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Fluid flow ; Flux density ; Heat flux ; Heat generation ; Heat transfer ; Liquid nitrogen ; Mathematical models ; Physics ; Reynolds number ; Simulation</subject><ispartof>Journal of physics. Conference series, 2017-11, Vol.925 (1), p.12015</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c355t-454dde2a19ba1c93c414443afe893872cebfcc86970680abf43d6290f950c1a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/925/1/012015/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Chernyavskiy, A N</creatorcontrib><creatorcontrib>Pavlenko, A N</creatorcontrib><title>Numerical simulation of heat transfer at unsteady heat generation in falling wavy liquid films</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The mathematical model which allows the calculation of the wave surface profile as well as velocity and temperature fields has been presented. The numerical simulation of heat transfer in falling wavy films of liquid nitrogen has been performed. The dependencies of boiling expectation time and total local evaporation time on heat flux density for different inlet Reynolds numbers have been calculated. The regime map which describes the different mechanisms of film decay was obtained by summing up the simulation results. The results of numerical simulation are in satisfactory agreement with the experimental data.</description><subject>Fluid flow</subject><subject>Flux density</subject><subject>Heat flux</subject><subject>Heat generation</subject><subject>Heat transfer</subject><subject>Liquid nitrogen</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Reynolds number</subject><subject>Simulation</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkNtKAzEQhhdRsFZfQQJeebFujrvJpRSPFBXUW0OaTWrKnprsKn17U1YqguDczMD_zQx8SXKK4AWCnGeooDjNmcgzgVmGMogwRGwvmeyC_d3M-WFyFMIKQhKrmCRvD0NtvNOqAsHVQ6V61zagteDdqB70XjXBGg_iPDShN6rcjMnSNMaPsGuAVVXlmiX4VB8bULn14EpgXVWH4-QgZsGcfPdp8np99TK7TeePN3ezy3mqCWN9ShktS4MVEguFtCCaIkopUdZwQXiBtVlYrXkuCphzqBaWkjLHAlrBoEYKkWlyNt7tfLseTOjlqh18E19KzApKGUGcRiofKe3bELyxsvOuVn4jEZRbl3KrSW6VyehSIjm6jIvn46Jru5_L90-z51-c7EobWfwH-8-DL0hvhAY</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Chernyavskiy, A N</creator><creator>Pavlenko, A N</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20171101</creationdate><title>Numerical simulation of heat transfer at unsteady heat generation in falling wavy liquid films</title><author>Chernyavskiy, A N ; Pavlenko, A N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-454dde2a19ba1c93c414443afe893872cebfcc86970680abf43d6290f950c1a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Fluid flow</topic><topic>Flux density</topic><topic>Heat flux</topic><topic>Heat generation</topic><topic>Heat transfer</topic><topic>Liquid nitrogen</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Reynolds number</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chernyavskiy, A N</creatorcontrib><creatorcontrib>Pavlenko, A N</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chernyavskiy, A N</au><au>Pavlenko, A N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of heat transfer at unsteady heat generation in falling wavy liquid films</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>925</volume><issue>1</issue><spage>12015</spage><pages>12015-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The mathematical model which allows the calculation of the wave surface profile as well as velocity and temperature fields has been presented. The numerical simulation of heat transfer in falling wavy films of liquid nitrogen has been performed. The dependencies of boiling expectation time and total local evaporation time on heat flux density for different inlet Reynolds numbers have been calculated. The regime map which describes the different mechanisms of film decay was obtained by summing up the simulation results. The results of numerical simulation are in satisfactory agreement with the experimental data.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/925/1/012015</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2017-11, Vol.925 (1), p.12015
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2574453184
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Fluid flow
Flux density
Heat flux
Heat generation
Heat transfer
Liquid nitrogen
Mathematical models
Physics
Reynolds number
Simulation
title Numerical simulation of heat transfer at unsteady heat generation in falling wavy liquid films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A47%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20heat%20transfer%20at%20unsteady%20heat%20generation%20in%20falling%20wavy%20liquid%20films&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Chernyavskiy,%20A%20N&rft.date=2017-11-01&rft.volume=925&rft.issue=1&rft.spage=12015&rft.pages=12015-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/925/1/012015&rft_dat=%3Cproquest_iop_j%3E2574453184%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574453184&rft_id=info:pmid/&rfr_iscdi=true