Study of oil sludge, waste oil and other auxiliary substances influence on the methane hydrate dissociation
In this paper, classes of oil medium that ensure the methane hydrate self-preservation were identified. The following compounds and substances were studied: asphaltenes, resins, asphaltene-resin-paraffin deposits (ARPD), multiwall carbon nanotubes, meloxicam (C14H13N3O4S2), kinetic hydrate inhibitor...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Earth and environmental science 2018-10, Vol.193 (1), p.12064 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, classes of oil medium that ensure the methane hydrate self-preservation were identified. The following compounds and substances were studied: asphaltenes, resins, asphaltene-resin-paraffin deposits (ARPD), multiwall carbon nanotubes, meloxicam (C14H13N3O4S2), kinetic hydrate inhibitors (KHI) Luvicap 55W (copolymer of N-vinylcaprolactam and N-vinylpyrrolidone) and Luvicap EG (poly(N-vinylcaprolactam)), refined petroleum products (initial and waste) and 2,6-Di-tert-butyl-4-methylphenol (antioxidant fuel additive AO-29). Isolated oil components had practically no effect on the decomposition process of methane hydrate. It was observed, that the presence of surface-active additives in refined petroleum products leads to suppression of the investigated effect (self-preservation). It seems to be that in the case of used engine oils, the degree of manifestation of methane hydrate self-preservation effect depends on the duration of its operation (mileage). The obtained results can be the basis of recycling of ARPD and hazardous waste petroleum products in technologies for storage/transportation of natural gas. |
---|---|
ISSN: | 1755-1307 1755-1315 1755-1315 |
DOI: | 10.1088/1755-1315/193/1/012064 |