A Copula-Based Approach for Accommodating the Underreporting Effect in Wildlife‒Vehicle Crash Analysis

Wildlife‒vehicle collision (WVC) data usually contain two types: the reported WVC data and carcass removal data. Previous studies often found a discrepancy between the number of reported WVC and carcass removal data, and the quality of both datasets is affected by underreporting. Underreporting mean...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2019-01, Vol.11 (2), p.418
Hauptverfasser: Zou, Yajie, Zhong, Xinzhi, Tang, Jinjun, Ye, Xin, Wu, Lingtao, Ijaz, Muhammad, Wang, Yinhai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 418
container_title Sustainability
container_volume 11
creator Zou, Yajie
Zhong, Xinzhi
Tang, Jinjun
Ye, Xin
Wu, Lingtao
Ijaz, Muhammad
Wang, Yinhai
description Wildlife‒vehicle collision (WVC) data usually contain two types: the reported WVC data and carcass removal data. Previous studies often found a discrepancy between the number of reported WVC and carcass removal data, and the quality of both datasets is affected by underreporting. Underreporting means the number of WVCs is not fully recorded in the database; neglecting the underreporting in WVC data may result in biased parameter estimation results. In this study, a copula regression model linking wildlife‒vehicle collisions and the underreporting outcome was proposed to consider the underreporting in WVC data. The WVC data collected from 10 highways in Washington State were analyzed using the copula regression model and the Negative Binomial (NB) model. The main findings from this study are as follows: (1) the Gaussian copula model can provide different modeling results when compared with the conventional modeling approach; (2) the hotspot identification results indicate that the Gaussian copula-based Empirical Bayes (EB) method can more accurately identify hotspots than the NB-based EB method. Thus, the proposed copula model may be a better alternative to the conventional NB model for modeling underreported WVC data.
doi_str_mv 10.3390/su11020418
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2574330849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574330849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-2ceaa3e6388b70d9ce52b23fd03c91220ea768f9a53f8c19e36ea7874f835b013</originalsourceid><addsrcrecordid>eNpNkM1KxDAUhYMoOIyz8QkC7oRqktufZFnL-AMDbhxdlkx6Yzt0mpq0i9n5DD6iT2J1BL2bczl8XO45hJxzdgWg2HUYOWeCxVwekZlgGY84S9jxv_2ULELYsmkAuOLpjNQ5LVw_tjq60QErmve9d9rU1DpPc2PcbucqPTTdKx1qpOuuQu-xd_7HWlqLZqBNR1-atmobi5_vH89YN6ZFWngdapp3ut2HJpyRE6vbgItfnZP17fKpuI9Wj3cPRb6KjFDJEAmDWgOmIOUmY5UymIiNAFsxMIoLwVBnqbRKJ2Cl4QohnRyZxVZCsmEc5uTicHfK8TZiGMqtG_30RChFksUATMZqoi4PlPEuBI-27H2z035fclZ-l1n-lQlfpKBniA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574330849</pqid></control><display><type>article</type><title>A Copula-Based Approach for Accommodating the Underreporting Effect in Wildlife‒Vehicle Crash Analysis</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zou, Yajie ; Zhong, Xinzhi ; Tang, Jinjun ; Ye, Xin ; Wu, Lingtao ; Ijaz, Muhammad ; Wang, Yinhai</creator><creatorcontrib>Zou, Yajie ; Zhong, Xinzhi ; Tang, Jinjun ; Ye, Xin ; Wu, Lingtao ; Ijaz, Muhammad ; Wang, Yinhai</creatorcontrib><description>Wildlife‒vehicle collision (WVC) data usually contain two types: the reported WVC data and carcass removal data. Previous studies often found a discrepancy between the number of reported WVC and carcass removal data, and the quality of both datasets is affected by underreporting. Underreporting means the number of WVCs is not fully recorded in the database; neglecting the underreporting in WVC data may result in biased parameter estimation results. In this study, a copula regression model linking wildlife‒vehicle collisions and the underreporting outcome was proposed to consider the underreporting in WVC data. The WVC data collected from 10 highways in Washington State were analyzed using the copula regression model and the Negative Binomial (NB) model. The main findings from this study are as follows: (1) the Gaussian copula model can provide different modeling results when compared with the conventional modeling approach; (2) the hotspot identification results indicate that the Gaussian copula-based Empirical Bayes (EB) method can more accurately identify hotspots than the NB-based EB method. Thus, the proposed copula model may be a better alternative to the conventional NB model for modeling underreported WVC data.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su11020418</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Access control ; Bayesian analysis ; Carcasses ; Datasets ; Highways ; Modelling ; Parameter estimation ; Roads &amp; highways ; Standard deviation ; Transportation planning ; Variables ; Wildlife</subject><ispartof>Sustainability, 2019-01, Vol.11 (2), p.418</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-2ceaa3e6388b70d9ce52b23fd03c91220ea768f9a53f8c19e36ea7874f835b013</citedby><cites>FETCH-LOGICAL-c295t-2ceaa3e6388b70d9ce52b23fd03c91220ea768f9a53f8c19e36ea7874f835b013</cites><orcidid>0000-0002-3505-168X ; 0000-0003-2337-7145 ; 0000-0001-9697-6953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zou, Yajie</creatorcontrib><creatorcontrib>Zhong, Xinzhi</creatorcontrib><creatorcontrib>Tang, Jinjun</creatorcontrib><creatorcontrib>Ye, Xin</creatorcontrib><creatorcontrib>Wu, Lingtao</creatorcontrib><creatorcontrib>Ijaz, Muhammad</creatorcontrib><creatorcontrib>Wang, Yinhai</creatorcontrib><title>A Copula-Based Approach for Accommodating the Underreporting Effect in Wildlife‒Vehicle Crash Analysis</title><title>Sustainability</title><description>Wildlife‒vehicle collision (WVC) data usually contain two types: the reported WVC data and carcass removal data. Previous studies often found a discrepancy between the number of reported WVC and carcass removal data, and the quality of both datasets is affected by underreporting. Underreporting means the number of WVCs is not fully recorded in the database; neglecting the underreporting in WVC data may result in biased parameter estimation results. In this study, a copula regression model linking wildlife‒vehicle collisions and the underreporting outcome was proposed to consider the underreporting in WVC data. The WVC data collected from 10 highways in Washington State were analyzed using the copula regression model and the Negative Binomial (NB) model. The main findings from this study are as follows: (1) the Gaussian copula model can provide different modeling results when compared with the conventional modeling approach; (2) the hotspot identification results indicate that the Gaussian copula-based Empirical Bayes (EB) method can more accurately identify hotspots than the NB-based EB method. Thus, the proposed copula model may be a better alternative to the conventional NB model for modeling underreported WVC data.</description><subject>Access control</subject><subject>Bayesian analysis</subject><subject>Carcasses</subject><subject>Datasets</subject><subject>Highways</subject><subject>Modelling</subject><subject>Parameter estimation</subject><subject>Roads &amp; highways</subject><subject>Standard deviation</subject><subject>Transportation planning</subject><subject>Variables</subject><subject>Wildlife</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkM1KxDAUhYMoOIyz8QkC7oRqktufZFnL-AMDbhxdlkx6Yzt0mpq0i9n5DD6iT2J1BL2bczl8XO45hJxzdgWg2HUYOWeCxVwekZlgGY84S9jxv_2ULELYsmkAuOLpjNQ5LVw_tjq60QErmve9d9rU1DpPc2PcbucqPTTdKx1qpOuuQu-xd_7HWlqLZqBNR1-atmobi5_vH89YN6ZFWngdapp3ut2HJpyRE6vbgItfnZP17fKpuI9Wj3cPRb6KjFDJEAmDWgOmIOUmY5UymIiNAFsxMIoLwVBnqbRKJ2Cl4QohnRyZxVZCsmEc5uTicHfK8TZiGMqtG_30RChFksUATMZqoi4PlPEuBI-27H2z035fclZ-l1n-lQlfpKBniA</recordid><startdate>20190115</startdate><enddate>20190115</enddate><creator>Zou, Yajie</creator><creator>Zhong, Xinzhi</creator><creator>Tang, Jinjun</creator><creator>Ye, Xin</creator><creator>Wu, Lingtao</creator><creator>Ijaz, Muhammad</creator><creator>Wang, Yinhai</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3505-168X</orcidid><orcidid>https://orcid.org/0000-0003-2337-7145</orcidid><orcidid>https://orcid.org/0000-0001-9697-6953</orcidid></search><sort><creationdate>20190115</creationdate><title>A Copula-Based Approach for Accommodating the Underreporting Effect in Wildlife‒Vehicle Crash Analysis</title><author>Zou, Yajie ; Zhong, Xinzhi ; Tang, Jinjun ; Ye, Xin ; Wu, Lingtao ; Ijaz, Muhammad ; Wang, Yinhai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-2ceaa3e6388b70d9ce52b23fd03c91220ea768f9a53f8c19e36ea7874f835b013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Access control</topic><topic>Bayesian analysis</topic><topic>Carcasses</topic><topic>Datasets</topic><topic>Highways</topic><topic>Modelling</topic><topic>Parameter estimation</topic><topic>Roads &amp; highways</topic><topic>Standard deviation</topic><topic>Transportation planning</topic><topic>Variables</topic><topic>Wildlife</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Yajie</creatorcontrib><creatorcontrib>Zhong, Xinzhi</creatorcontrib><creatorcontrib>Tang, Jinjun</creatorcontrib><creatorcontrib>Ye, Xin</creatorcontrib><creatorcontrib>Wu, Lingtao</creatorcontrib><creatorcontrib>Ijaz, Muhammad</creatorcontrib><creatorcontrib>Wang, Yinhai</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Yajie</au><au>Zhong, Xinzhi</au><au>Tang, Jinjun</au><au>Ye, Xin</au><au>Wu, Lingtao</au><au>Ijaz, Muhammad</au><au>Wang, Yinhai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Copula-Based Approach for Accommodating the Underreporting Effect in Wildlife‒Vehicle Crash Analysis</atitle><jtitle>Sustainability</jtitle><date>2019-01-15</date><risdate>2019</risdate><volume>11</volume><issue>2</issue><spage>418</spage><pages>418-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Wildlife‒vehicle collision (WVC) data usually contain two types: the reported WVC data and carcass removal data. Previous studies often found a discrepancy between the number of reported WVC and carcass removal data, and the quality of both datasets is affected by underreporting. Underreporting means the number of WVCs is not fully recorded in the database; neglecting the underreporting in WVC data may result in biased parameter estimation results. In this study, a copula regression model linking wildlife‒vehicle collisions and the underreporting outcome was proposed to consider the underreporting in WVC data. The WVC data collected from 10 highways in Washington State were analyzed using the copula regression model and the Negative Binomial (NB) model. The main findings from this study are as follows: (1) the Gaussian copula model can provide different modeling results when compared with the conventional modeling approach; (2) the hotspot identification results indicate that the Gaussian copula-based Empirical Bayes (EB) method can more accurately identify hotspots than the NB-based EB method. Thus, the proposed copula model may be a better alternative to the conventional NB model for modeling underreported WVC data.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su11020418</doi><orcidid>https://orcid.org/0000-0002-3505-168X</orcidid><orcidid>https://orcid.org/0000-0003-2337-7145</orcidid><orcidid>https://orcid.org/0000-0001-9697-6953</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2019-01, Vol.11 (2), p.418
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2574330849
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Access control
Bayesian analysis
Carcasses
Datasets
Highways
Modelling
Parameter estimation
Roads & highways
Standard deviation
Transportation planning
Variables
Wildlife
title A Copula-Based Approach for Accommodating the Underreporting Effect in Wildlife‒Vehicle Crash Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A37%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Copula-Based%20Approach%20for%20Accommodating%20the%20Underreporting%20Effect%20in%20Wildlife%E2%80%92Vehicle%20Crash%20Analysis&rft.jtitle=Sustainability&rft.au=Zou,%20Yajie&rft.date=2019-01-15&rft.volume=11&rft.issue=2&rft.spage=418&rft.pages=418-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su11020418&rft_dat=%3Cproquest_cross%3E2574330849%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574330849&rft_id=info:pmid/&rfr_iscdi=true