A Reactive Power Compensation Strategy for Voltage Stability Challenges in the Korean Power System with Dynamic Loads
This paper describes a methodology and specifics for technical studies on fault-induced delayed voltage recovery (FIDVR) mitigation to ensure power system reliability. Optimal locations of the dynamic volts-ampere-reactive (VAR) sources are determined for addressing the FIDVR issues in the voltage s...
Gespeichert in:
Veröffentlicht in: | Sustainability 2019-01, Vol.11 (2), p.326 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 326 |
container_title | Sustainability |
container_volume | 11 |
creator | Lee, Yunhwan Song, Hwachang |
description | This paper describes a methodology and specifics for technical studies on fault-induced delayed voltage recovery (FIDVR) mitigation to ensure power system reliability. Optimal locations of the dynamic volts-ampere-reactive (VAR) sources are determined for addressing the FIDVR issues in the voltage stability analysis and assessment methodology. We propose a voltage stability analysis method for planning dynamic VAR sources for bettering electric power transmission systems under contingency conditions. A time-domain dynamic simulation is performed to assess short-term voltage stability. While conducting dynamic simulations, sensitivity analysis is performed to assess the need for dynamic VAR sources. This study focuses on a reactive power compensation strategy to determine system voltage recovery performance by optimal flexible alternating current transmission system (FACTS) placement in a metropolitan region. The objective of this study is to determine the optimal installation of dynamic VAR sources while satisfying the requirements of voltage stability margin and transient voltage dip under a set of criteria. New insights are presented on the effect of FACTS controls on the reactive power compensation, which supports voltage recovery. The main features of the proposed method are (i) the development based on a load model for FIDVR, (ii) the use of sensitivity analysis of the network to the variations of the IM load, (iii) the establishment of the control function and compensation strategy to maintain the voltage of system within criteria limits, and (iv) the use of the sensitivity analysis based on branch parameterization for unsolvable cases. Case studies on the Korean power system validated the performance of the proposed strategy, showing that it effectively installed FACTS under contingency scenarios. |
doi_str_mv | 10.3390/su11020326 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2574327989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574327989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-84fce7585869842179d526551e6a13c5d8398d89018c025ce6da04af4a4b4f163</originalsourceid><addsrcrecordid>eNpNUN1LwzAcDKLgmHvxLwj4JlTz0bTJ46ifOFCc-lqy9Ncto21mkjr631txoPdyx3HcwSF0TskV54pch55Swghn2RGaMJLThBJBjv_pUzQLYUtGcE4VzSaon-NX0CbaL8Avbg8eF67dQRd0tK7Dy-h1hPWAa-fxh2uiXsNo6pVtbBxwsdFNA90aArYdjhvAT86D7g5VyyFEaPHexg2-GTrdWoMXTlfhDJ3UugkwO_AUvd_dvhUPyeL5_rGYLxLDlIiJTGsDuZBCZkqmjOaqEiwTgkKmKTeiklzJSipCpSFMGMgqTVJdpzpdpTXN-BRd_PbuvPvsIcRy63rfjZMlE3nKWa6kGlOXvynjXQge6nLnbav9UFJS_jxb_j3LvwHF6Gqz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574327989</pqid></control><display><type>article</type><title>A Reactive Power Compensation Strategy for Voltage Stability Challenges in the Korean Power System with Dynamic Loads</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lee, Yunhwan ; Song, Hwachang</creator><creatorcontrib>Lee, Yunhwan ; Song, Hwachang</creatorcontrib><description>This paper describes a methodology and specifics for technical studies on fault-induced delayed voltage recovery (FIDVR) mitigation to ensure power system reliability. Optimal locations of the dynamic volts-ampere-reactive (VAR) sources are determined for addressing the FIDVR issues in the voltage stability analysis and assessment methodology. We propose a voltage stability analysis method for planning dynamic VAR sources for bettering electric power transmission systems under contingency conditions. A time-domain dynamic simulation is performed to assess short-term voltage stability. While conducting dynamic simulations, sensitivity analysis is performed to assess the need for dynamic VAR sources. This study focuses on a reactive power compensation strategy to determine system voltage recovery performance by optimal flexible alternating current transmission system (FACTS) placement in a metropolitan region. The objective of this study is to determine the optimal installation of dynamic VAR sources while satisfying the requirements of voltage stability margin and transient voltage dip under a set of criteria. New insights are presented on the effect of FACTS controls on the reactive power compensation, which supports voltage recovery. The main features of the proposed method are (i) the development based on a load model for FIDVR, (ii) the use of sensitivity analysis of the network to the variations of the IM load, (iii) the establishment of the control function and compensation strategy to maintain the voltage of system within criteria limits, and (iv) the use of the sensitivity analysis based on branch parameterization for unsolvable cases. Case studies on the Korean power system validated the performance of the proposed strategy, showing that it effectively installed FACTS under contingency scenarios.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su11020326</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Compensation ; Contingency ; Criteria ; Dynamic loads ; Dynamic stability ; Electric power ; Electric power systems ; Electric power transmission ; Electrical loads ; Flexible AC power transmission systems ; Metropolitan areas ; Mitigation ; Parameterization ; Reactive power ; Sensitivity analysis ; Stability analysis ; Strategy ; Sustainability ; System reliability ; Systems stability ; Voltage ; Voltage stability ; Winter</subject><ispartof>Sustainability, 2019-01, Vol.11 (2), p.326</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-84fce7585869842179d526551e6a13c5d8398d89018c025ce6da04af4a4b4f163</citedby><cites>FETCH-LOGICAL-c295t-84fce7585869842179d526551e6a13c5d8398d89018c025ce6da04af4a4b4f163</cites><orcidid>0000-0002-6313-2719 ; 0000-0002-6784-4406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lee, Yunhwan</creatorcontrib><creatorcontrib>Song, Hwachang</creatorcontrib><title>A Reactive Power Compensation Strategy for Voltage Stability Challenges in the Korean Power System with Dynamic Loads</title><title>Sustainability</title><description>This paper describes a methodology and specifics for technical studies on fault-induced delayed voltage recovery (FIDVR) mitigation to ensure power system reliability. Optimal locations of the dynamic volts-ampere-reactive (VAR) sources are determined for addressing the FIDVR issues in the voltage stability analysis and assessment methodology. We propose a voltage stability analysis method for planning dynamic VAR sources for bettering electric power transmission systems under contingency conditions. A time-domain dynamic simulation is performed to assess short-term voltage stability. While conducting dynamic simulations, sensitivity analysis is performed to assess the need for dynamic VAR sources. This study focuses on a reactive power compensation strategy to determine system voltage recovery performance by optimal flexible alternating current transmission system (FACTS) placement in a metropolitan region. The objective of this study is to determine the optimal installation of dynamic VAR sources while satisfying the requirements of voltage stability margin and transient voltage dip under a set of criteria. New insights are presented on the effect of FACTS controls on the reactive power compensation, which supports voltage recovery. The main features of the proposed method are (i) the development based on a load model for FIDVR, (ii) the use of sensitivity analysis of the network to the variations of the IM load, (iii) the establishment of the control function and compensation strategy to maintain the voltage of system within criteria limits, and (iv) the use of the sensitivity analysis based on branch parameterization for unsolvable cases. Case studies on the Korean power system validated the performance of the proposed strategy, showing that it effectively installed FACTS under contingency scenarios.</description><subject>Compensation</subject><subject>Contingency</subject><subject>Criteria</subject><subject>Dynamic loads</subject><subject>Dynamic stability</subject><subject>Electric power</subject><subject>Electric power systems</subject><subject>Electric power transmission</subject><subject>Electrical loads</subject><subject>Flexible AC power transmission systems</subject><subject>Metropolitan areas</subject><subject>Mitigation</subject><subject>Parameterization</subject><subject>Reactive power</subject><subject>Sensitivity analysis</subject><subject>Stability analysis</subject><subject>Strategy</subject><subject>Sustainability</subject><subject>System reliability</subject><subject>Systems stability</subject><subject>Voltage</subject><subject>Voltage stability</subject><subject>Winter</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNUN1LwzAcDKLgmHvxLwj4JlTz0bTJ46ifOFCc-lqy9Ncto21mkjr631txoPdyx3HcwSF0TskV54pch55Swghn2RGaMJLThBJBjv_pUzQLYUtGcE4VzSaon-NX0CbaL8Avbg8eF67dQRd0tK7Dy-h1hPWAa-fxh2uiXsNo6pVtbBxwsdFNA90aArYdjhvAT86D7g5VyyFEaPHexg2-GTrdWoMXTlfhDJ3UugkwO_AUvd_dvhUPyeL5_rGYLxLDlIiJTGsDuZBCZkqmjOaqEiwTgkKmKTeiklzJSipCpSFMGMgqTVJdpzpdpTXN-BRd_PbuvPvsIcRy63rfjZMlE3nKWa6kGlOXvynjXQge6nLnbav9UFJS_jxb_j3LvwHF6Gqz</recordid><startdate>20190110</startdate><enddate>20190110</enddate><creator>Lee, Yunhwan</creator><creator>Song, Hwachang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-6313-2719</orcidid><orcidid>https://orcid.org/0000-0002-6784-4406</orcidid></search><sort><creationdate>20190110</creationdate><title>A Reactive Power Compensation Strategy for Voltage Stability Challenges in the Korean Power System with Dynamic Loads</title><author>Lee, Yunhwan ; Song, Hwachang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-84fce7585869842179d526551e6a13c5d8398d89018c025ce6da04af4a4b4f163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Compensation</topic><topic>Contingency</topic><topic>Criteria</topic><topic>Dynamic loads</topic><topic>Dynamic stability</topic><topic>Electric power</topic><topic>Electric power systems</topic><topic>Electric power transmission</topic><topic>Electrical loads</topic><topic>Flexible AC power transmission systems</topic><topic>Metropolitan areas</topic><topic>Mitigation</topic><topic>Parameterization</topic><topic>Reactive power</topic><topic>Sensitivity analysis</topic><topic>Stability analysis</topic><topic>Strategy</topic><topic>Sustainability</topic><topic>System reliability</topic><topic>Systems stability</topic><topic>Voltage</topic><topic>Voltage stability</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Yunhwan</creatorcontrib><creatorcontrib>Song, Hwachang</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Yunhwan</au><au>Song, Hwachang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Reactive Power Compensation Strategy for Voltage Stability Challenges in the Korean Power System with Dynamic Loads</atitle><jtitle>Sustainability</jtitle><date>2019-01-10</date><risdate>2019</risdate><volume>11</volume><issue>2</issue><spage>326</spage><pages>326-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>This paper describes a methodology and specifics for technical studies on fault-induced delayed voltage recovery (FIDVR) mitigation to ensure power system reliability. Optimal locations of the dynamic volts-ampere-reactive (VAR) sources are determined for addressing the FIDVR issues in the voltage stability analysis and assessment methodology. We propose a voltage stability analysis method for planning dynamic VAR sources for bettering electric power transmission systems under contingency conditions. A time-domain dynamic simulation is performed to assess short-term voltage stability. While conducting dynamic simulations, sensitivity analysis is performed to assess the need for dynamic VAR sources. This study focuses on a reactive power compensation strategy to determine system voltage recovery performance by optimal flexible alternating current transmission system (FACTS) placement in a metropolitan region. The objective of this study is to determine the optimal installation of dynamic VAR sources while satisfying the requirements of voltage stability margin and transient voltage dip under a set of criteria. New insights are presented on the effect of FACTS controls on the reactive power compensation, which supports voltage recovery. The main features of the proposed method are (i) the development based on a load model for FIDVR, (ii) the use of sensitivity analysis of the network to the variations of the IM load, (iii) the establishment of the control function and compensation strategy to maintain the voltage of system within criteria limits, and (iv) the use of the sensitivity analysis based on branch parameterization for unsolvable cases. Case studies on the Korean power system validated the performance of the proposed strategy, showing that it effectively installed FACTS under contingency scenarios.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su11020326</doi><orcidid>https://orcid.org/0000-0002-6313-2719</orcidid><orcidid>https://orcid.org/0000-0002-6784-4406</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2019-01, Vol.11 (2), p.326 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2574327989 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Compensation Contingency Criteria Dynamic loads Dynamic stability Electric power Electric power systems Electric power transmission Electrical loads Flexible AC power transmission systems Metropolitan areas Mitigation Parameterization Reactive power Sensitivity analysis Stability analysis Strategy Sustainability System reliability Systems stability Voltage Voltage stability Winter |
title | A Reactive Power Compensation Strategy for Voltage Stability Challenges in the Korean Power System with Dynamic Loads |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A37%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Reactive%20Power%20Compensation%20Strategy%20for%20Voltage%20Stability%20Challenges%20in%20the%20Korean%20Power%20System%20with%20Dynamic%20Loads&rft.jtitle=Sustainability&rft.au=Lee,%20Yunhwan&rft.date=2019-01-10&rft.volume=11&rft.issue=2&rft.spage=326&rft.pages=326-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su11020326&rft_dat=%3Cproquest_cross%3E2574327989%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574327989&rft_id=info:pmid/&rfr_iscdi=true |