Tailored Local Bandgap Modulation as a Strategy to Maximize Luminescence Yields in Mixed‐Halide Perovskites

Halide perovskites have emerged as high‐performance semiconductors for efficient optoelectronic devices, not least because of their bandgap tunability using mixtures of different halide ions. Here, temperature‐dependent photoluminescence microscopy with computational modelling is combined to quantif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2021-09, Vol.9 (18), p.n/a
Hauptverfasser: Feldmann, Sascha, Neumann, Timo, Ciesielski, Richard, Friend, Richard H., Hartschuh, Achim, Deschler, Felix
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 18
container_start_page
container_title Advanced optical materials
container_volume 9
creator Feldmann, Sascha
Neumann, Timo
Ciesielski, Richard
Friend, Richard H.
Hartschuh, Achim
Deschler, Felix
description Halide perovskites have emerged as high‐performance semiconductors for efficient optoelectronic devices, not least because of their bandgap tunability using mixtures of different halide ions. Here, temperature‐dependent photoluminescence microscopy with computational modelling is combined to quantify the impact of local bandgap variations from disordered halide distributions on the global photoluminescence yield in mixed‐halide perovskite films. It is found that fabrication temperature, surface energy, and charge recombination constants are keys for describing local bandgap variations and charge carrier funneling processes that control the photoluminescence quantum efficiency. It is reported that further luminescence efficiency gains are possible through tailored bandgap modulation, even for materials that have already demonstrated high luminescence yields. The work provides a novel strategy and fabrication guidelines for further improvement of halide perovskite performance in light‐emitting and photovoltaic applications. Halide perovskite films show remarkable optoelectronic performance although their fabrication from solution should introduce harmful energetic disorder. The authors now quantify regimes where local charge accumulation at energy minima can indeed be beneficial for the luminescence yields, and identify key fabrication factors for their optimization.
doi_str_mv 10.1002/adom.202100635
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2574261279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574261279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3575-85045c7f35c59de2cd00bb0a4fba1a3d77a89741bbb919b19233fa31254f34ca3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRSMEElXplrUl1il-xHW9LOVRpFZFoixYRRPbqVySuNgJtKz4BL6RLyFVEbBjNXOlc2akG0WnBPcJxvQctCv7FNM2DBg_iDqUSB4TLMjhn_046oWwwhi3gclEdKJyAbZw3mg0dQoKdAGVXsIazZxuCqitqxAEBOi-9lCb5RbVDs1gY0v7ZtC0KW1lgjKVMujRmkIHZCs0sxujP98_JlBYbdCd8e4lPNnahJPoKIcimN737EYP11eL8SSezm9ux6NprBgXPB5ynHAlcsYVl9pQpTHOMgxJngEBpoWAoRQJybJMEpkRSRnLgRHKk5wlClg3OtvfXXv33JhQpyvX-Kp9mVIuEjogVMiW6u8p5V0I3uTp2tsS_DYlON21mu5aTX9abQW5F15tYbb_0Onocj77db8AzVp8vg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574261279</pqid></control><display><type>article</type><title>Tailored Local Bandgap Modulation as a Strategy to Maximize Luminescence Yields in Mixed‐Halide Perovskites</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Feldmann, Sascha ; Neumann, Timo ; Ciesielski, Richard ; Friend, Richard H. ; Hartschuh, Achim ; Deschler, Felix</creator><creatorcontrib>Feldmann, Sascha ; Neumann, Timo ; Ciesielski, Richard ; Friend, Richard H. ; Hartschuh, Achim ; Deschler, Felix</creatorcontrib><description>Halide perovskites have emerged as high‐performance semiconductors for efficient optoelectronic devices, not least because of their bandgap tunability using mixtures of different halide ions. Here, temperature‐dependent photoluminescence microscopy with computational modelling is combined to quantify the impact of local bandgap variations from disordered halide distributions on the global photoluminescence yield in mixed‐halide perovskite films. It is found that fabrication temperature, surface energy, and charge recombination constants are keys for describing local bandgap variations and charge carrier funneling processes that control the photoluminescence quantum efficiency. It is reported that further luminescence efficiency gains are possible through tailored bandgap modulation, even for materials that have already demonstrated high luminescence yields. The work provides a novel strategy and fabrication guidelines for further improvement of halide perovskite performance in light‐emitting and photovoltaic applications. Halide perovskite films show remarkable optoelectronic performance although their fabrication from solution should introduce harmful energetic disorder. The authors now quantify regimes where local charge accumulation at energy minima can indeed be beneficial for the luminescence yields, and identify key fabrication factors for their optimization.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202100635</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Current carriers ; Energy gap ; halide perovskites ; halide segregation ; Luminescence ; Materials science ; Modulation ; Optics ; Optoelectronic devices ; optoelectronics ; Perovskites ; Photoluminescence ; Quantum efficiency ; Surface energy ; Temperature dependence</subject><ispartof>Advanced optical materials, 2021-09, Vol.9 (18), p.n/a</ispartof><rights>2021 The Authors. Advanced Optical Materials published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3575-85045c7f35c59de2cd00bb0a4fba1a3d77a89741bbb919b19233fa31254f34ca3</citedby><cites>FETCH-LOGICAL-c3575-85045c7f35c59de2cd00bb0a4fba1a3d77a89741bbb919b19233fa31254f34ca3</cites><orcidid>0000-0002-0771-3324 ; 0000-0002-6583-5354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202100635$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202100635$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Feldmann, Sascha</creatorcontrib><creatorcontrib>Neumann, Timo</creatorcontrib><creatorcontrib>Ciesielski, Richard</creatorcontrib><creatorcontrib>Friend, Richard H.</creatorcontrib><creatorcontrib>Hartschuh, Achim</creatorcontrib><creatorcontrib>Deschler, Felix</creatorcontrib><title>Tailored Local Bandgap Modulation as a Strategy to Maximize Luminescence Yields in Mixed‐Halide Perovskites</title><title>Advanced optical materials</title><description>Halide perovskites have emerged as high‐performance semiconductors for efficient optoelectronic devices, not least because of their bandgap tunability using mixtures of different halide ions. Here, temperature‐dependent photoluminescence microscopy with computational modelling is combined to quantify the impact of local bandgap variations from disordered halide distributions on the global photoluminescence yield in mixed‐halide perovskite films. It is found that fabrication temperature, surface energy, and charge recombination constants are keys for describing local bandgap variations and charge carrier funneling processes that control the photoluminescence quantum efficiency. It is reported that further luminescence efficiency gains are possible through tailored bandgap modulation, even for materials that have already demonstrated high luminescence yields. The work provides a novel strategy and fabrication guidelines for further improvement of halide perovskite performance in light‐emitting and photovoltaic applications. Halide perovskite films show remarkable optoelectronic performance although their fabrication from solution should introduce harmful energetic disorder. The authors now quantify regimes where local charge accumulation at energy minima can indeed be beneficial for the luminescence yields, and identify key fabrication factors for their optimization.</description><subject>Current carriers</subject><subject>Energy gap</subject><subject>halide perovskites</subject><subject>halide segregation</subject><subject>Luminescence</subject><subject>Materials science</subject><subject>Modulation</subject><subject>Optics</subject><subject>Optoelectronic devices</subject><subject>optoelectronics</subject><subject>Perovskites</subject><subject>Photoluminescence</subject><subject>Quantum efficiency</subject><subject>Surface energy</subject><subject>Temperature dependence</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkMtOwzAQRSMEElXplrUl1il-xHW9LOVRpFZFoixYRRPbqVySuNgJtKz4BL6RLyFVEbBjNXOlc2akG0WnBPcJxvQctCv7FNM2DBg_iDqUSB4TLMjhn_046oWwwhi3gclEdKJyAbZw3mg0dQoKdAGVXsIazZxuCqitqxAEBOi-9lCb5RbVDs1gY0v7ZtC0KW1lgjKVMujRmkIHZCs0sxujP98_JlBYbdCd8e4lPNnahJPoKIcimN737EYP11eL8SSezm9ux6NprBgXPB5ynHAlcsYVl9pQpTHOMgxJngEBpoWAoRQJybJMEpkRSRnLgRHKk5wlClg3OtvfXXv33JhQpyvX-Kp9mVIuEjogVMiW6u8p5V0I3uTp2tsS_DYlON21mu5aTX9abQW5F15tYbb_0Onocj77db8AzVp8vg</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Feldmann, Sascha</creator><creator>Neumann, Timo</creator><creator>Ciesielski, Richard</creator><creator>Friend, Richard H.</creator><creator>Hartschuh, Achim</creator><creator>Deschler, Felix</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0771-3324</orcidid><orcidid>https://orcid.org/0000-0002-6583-5354</orcidid></search><sort><creationdate>20210901</creationdate><title>Tailored Local Bandgap Modulation as a Strategy to Maximize Luminescence Yields in Mixed‐Halide Perovskites</title><author>Feldmann, Sascha ; Neumann, Timo ; Ciesielski, Richard ; Friend, Richard H. ; Hartschuh, Achim ; Deschler, Felix</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3575-85045c7f35c59de2cd00bb0a4fba1a3d77a89741bbb919b19233fa31254f34ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Current carriers</topic><topic>Energy gap</topic><topic>halide perovskites</topic><topic>halide segregation</topic><topic>Luminescence</topic><topic>Materials science</topic><topic>Modulation</topic><topic>Optics</topic><topic>Optoelectronic devices</topic><topic>optoelectronics</topic><topic>Perovskites</topic><topic>Photoluminescence</topic><topic>Quantum efficiency</topic><topic>Surface energy</topic><topic>Temperature dependence</topic><toplevel>online_resources</toplevel><creatorcontrib>Feldmann, Sascha</creatorcontrib><creatorcontrib>Neumann, Timo</creatorcontrib><creatorcontrib>Ciesielski, Richard</creatorcontrib><creatorcontrib>Friend, Richard H.</creatorcontrib><creatorcontrib>Hartschuh, Achim</creatorcontrib><creatorcontrib>Deschler, Felix</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feldmann, Sascha</au><au>Neumann, Timo</au><au>Ciesielski, Richard</au><au>Friend, Richard H.</au><au>Hartschuh, Achim</au><au>Deschler, Felix</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailored Local Bandgap Modulation as a Strategy to Maximize Luminescence Yields in Mixed‐Halide Perovskites</atitle><jtitle>Advanced optical materials</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>9</volume><issue>18</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Halide perovskites have emerged as high‐performance semiconductors for efficient optoelectronic devices, not least because of their bandgap tunability using mixtures of different halide ions. Here, temperature‐dependent photoluminescence microscopy with computational modelling is combined to quantify the impact of local bandgap variations from disordered halide distributions on the global photoluminescence yield in mixed‐halide perovskite films. It is found that fabrication temperature, surface energy, and charge recombination constants are keys for describing local bandgap variations and charge carrier funneling processes that control the photoluminescence quantum efficiency. It is reported that further luminescence efficiency gains are possible through tailored bandgap modulation, even for materials that have already demonstrated high luminescence yields. The work provides a novel strategy and fabrication guidelines for further improvement of halide perovskite performance in light‐emitting and photovoltaic applications. Halide perovskite films show remarkable optoelectronic performance although their fabrication from solution should introduce harmful energetic disorder. The authors now quantify regimes where local charge accumulation at energy minima can indeed be beneficial for the luminescence yields, and identify key fabrication factors for their optimization.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202100635</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0771-3324</orcidid><orcidid>https://orcid.org/0000-0002-6583-5354</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2021-09, Vol.9 (18), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_2574261279
source Wiley Online Library Journals Frontfile Complete
subjects Current carriers
Energy gap
halide perovskites
halide segregation
Luminescence
Materials science
Modulation
Optics
Optoelectronic devices
optoelectronics
Perovskites
Photoluminescence
Quantum efficiency
Surface energy
Temperature dependence
title Tailored Local Bandgap Modulation as a Strategy to Maximize Luminescence Yields in Mixed‐Halide Perovskites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A59%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailored%20Local%20Bandgap%20Modulation%20as%20a%20Strategy%20to%20Maximize%20Luminescence%20Yields%20in%20Mixed%E2%80%90Halide%20Perovskites&rft.jtitle=Advanced%20optical%20materials&rft.au=Feldmann,%20Sascha&rft.date=2021-09-01&rft.volume=9&rft.issue=18&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202100635&rft_dat=%3Cproquest_cross%3E2574261279%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574261279&rft_id=info:pmid/&rfr_iscdi=true