Tailored Local Bandgap Modulation as a Strategy to Maximize Luminescence Yields in Mixed‐Halide Perovskites
Halide perovskites have emerged as high‐performance semiconductors for efficient optoelectronic devices, not least because of their bandgap tunability using mixtures of different halide ions. Here, temperature‐dependent photoluminescence microscopy with computational modelling is combined to quantif...
Gespeichert in:
Veröffentlicht in: | Advanced optical materials 2021-09, Vol.9 (18), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 18 |
container_start_page | |
container_title | Advanced optical materials |
container_volume | 9 |
creator | Feldmann, Sascha Neumann, Timo Ciesielski, Richard Friend, Richard H. Hartschuh, Achim Deschler, Felix |
description | Halide perovskites have emerged as high‐performance semiconductors for efficient optoelectronic devices, not least because of their bandgap tunability using mixtures of different halide ions. Here, temperature‐dependent photoluminescence microscopy with computational modelling is combined to quantify the impact of local bandgap variations from disordered halide distributions on the global photoluminescence yield in mixed‐halide perovskite films. It is found that fabrication temperature, surface energy, and charge recombination constants are keys for describing local bandgap variations and charge carrier funneling processes that control the photoluminescence quantum efficiency. It is reported that further luminescence efficiency gains are possible through tailored bandgap modulation, even for materials that have already demonstrated high luminescence yields. The work provides a novel strategy and fabrication guidelines for further improvement of halide perovskite performance in light‐emitting and photovoltaic applications.
Halide perovskite films show remarkable optoelectronic performance although their fabrication from solution should introduce harmful energetic disorder. The authors now quantify regimes where local charge accumulation at energy minima can indeed be beneficial for the luminescence yields, and identify key fabrication factors for their optimization. |
doi_str_mv | 10.1002/adom.202100635 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2574261279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574261279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3575-85045c7f35c59de2cd00bb0a4fba1a3d77a89741bbb919b19233fa31254f34ca3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRSMEElXplrUl1il-xHW9LOVRpFZFoixYRRPbqVySuNgJtKz4BL6RLyFVEbBjNXOlc2akG0WnBPcJxvQctCv7FNM2DBg_iDqUSB4TLMjhn_046oWwwhi3gclEdKJyAbZw3mg0dQoKdAGVXsIazZxuCqitqxAEBOi-9lCb5RbVDs1gY0v7ZtC0KW1lgjKVMujRmkIHZCs0sxujP98_JlBYbdCd8e4lPNnahJPoKIcimN737EYP11eL8SSezm9ux6NprBgXPB5ynHAlcsYVl9pQpTHOMgxJngEBpoWAoRQJybJMEpkRSRnLgRHKk5wlClg3OtvfXXv33JhQpyvX-Kp9mVIuEjogVMiW6u8p5V0I3uTp2tsS_DYlON21mu5aTX9abQW5F15tYbb_0Onocj77db8AzVp8vg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574261279</pqid></control><display><type>article</type><title>Tailored Local Bandgap Modulation as a Strategy to Maximize Luminescence Yields in Mixed‐Halide Perovskites</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Feldmann, Sascha ; Neumann, Timo ; Ciesielski, Richard ; Friend, Richard H. ; Hartschuh, Achim ; Deschler, Felix</creator><creatorcontrib>Feldmann, Sascha ; Neumann, Timo ; Ciesielski, Richard ; Friend, Richard H. ; Hartschuh, Achim ; Deschler, Felix</creatorcontrib><description>Halide perovskites have emerged as high‐performance semiconductors for efficient optoelectronic devices, not least because of their bandgap tunability using mixtures of different halide ions. Here, temperature‐dependent photoluminescence microscopy with computational modelling is combined to quantify the impact of local bandgap variations from disordered halide distributions on the global photoluminescence yield in mixed‐halide perovskite films. It is found that fabrication temperature, surface energy, and charge recombination constants are keys for describing local bandgap variations and charge carrier funneling processes that control the photoluminescence quantum efficiency. It is reported that further luminescence efficiency gains are possible through tailored bandgap modulation, even for materials that have already demonstrated high luminescence yields. The work provides a novel strategy and fabrication guidelines for further improvement of halide perovskite performance in light‐emitting and photovoltaic applications.
Halide perovskite films show remarkable optoelectronic performance although their fabrication from solution should introduce harmful energetic disorder. The authors now quantify regimes where local charge accumulation at energy minima can indeed be beneficial for the luminescence yields, and identify key fabrication factors for their optimization.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202100635</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Current carriers ; Energy gap ; halide perovskites ; halide segregation ; Luminescence ; Materials science ; Modulation ; Optics ; Optoelectronic devices ; optoelectronics ; Perovskites ; Photoluminescence ; Quantum efficiency ; Surface energy ; Temperature dependence</subject><ispartof>Advanced optical materials, 2021-09, Vol.9 (18), p.n/a</ispartof><rights>2021 The Authors. Advanced Optical Materials published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3575-85045c7f35c59de2cd00bb0a4fba1a3d77a89741bbb919b19233fa31254f34ca3</citedby><cites>FETCH-LOGICAL-c3575-85045c7f35c59de2cd00bb0a4fba1a3d77a89741bbb919b19233fa31254f34ca3</cites><orcidid>0000-0002-0771-3324 ; 0000-0002-6583-5354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202100635$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202100635$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Feldmann, Sascha</creatorcontrib><creatorcontrib>Neumann, Timo</creatorcontrib><creatorcontrib>Ciesielski, Richard</creatorcontrib><creatorcontrib>Friend, Richard H.</creatorcontrib><creatorcontrib>Hartschuh, Achim</creatorcontrib><creatorcontrib>Deschler, Felix</creatorcontrib><title>Tailored Local Bandgap Modulation as a Strategy to Maximize Luminescence Yields in Mixed‐Halide Perovskites</title><title>Advanced optical materials</title><description>Halide perovskites have emerged as high‐performance semiconductors for efficient optoelectronic devices, not least because of their bandgap tunability using mixtures of different halide ions. Here, temperature‐dependent photoluminescence microscopy with computational modelling is combined to quantify the impact of local bandgap variations from disordered halide distributions on the global photoluminescence yield in mixed‐halide perovskite films. It is found that fabrication temperature, surface energy, and charge recombination constants are keys for describing local bandgap variations and charge carrier funneling processes that control the photoluminescence quantum efficiency. It is reported that further luminescence efficiency gains are possible through tailored bandgap modulation, even for materials that have already demonstrated high luminescence yields. The work provides a novel strategy and fabrication guidelines for further improvement of halide perovskite performance in light‐emitting and photovoltaic applications.
Halide perovskite films show remarkable optoelectronic performance although their fabrication from solution should introduce harmful energetic disorder. The authors now quantify regimes where local charge accumulation at energy minima can indeed be beneficial for the luminescence yields, and identify key fabrication factors for their optimization.</description><subject>Current carriers</subject><subject>Energy gap</subject><subject>halide perovskites</subject><subject>halide segregation</subject><subject>Luminescence</subject><subject>Materials science</subject><subject>Modulation</subject><subject>Optics</subject><subject>Optoelectronic devices</subject><subject>optoelectronics</subject><subject>Perovskites</subject><subject>Photoluminescence</subject><subject>Quantum efficiency</subject><subject>Surface energy</subject><subject>Temperature dependence</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkMtOwzAQRSMEElXplrUl1il-xHW9LOVRpFZFoixYRRPbqVySuNgJtKz4BL6RLyFVEbBjNXOlc2akG0WnBPcJxvQctCv7FNM2DBg_iDqUSB4TLMjhn_046oWwwhi3gclEdKJyAbZw3mg0dQoKdAGVXsIazZxuCqitqxAEBOi-9lCb5RbVDs1gY0v7ZtC0KW1lgjKVMujRmkIHZCs0sxujP98_JlBYbdCd8e4lPNnahJPoKIcimN737EYP11eL8SSezm9ux6NprBgXPB5ynHAlcsYVl9pQpTHOMgxJngEBpoWAoRQJybJMEpkRSRnLgRHKk5wlClg3OtvfXXv33JhQpyvX-Kp9mVIuEjogVMiW6u8p5V0I3uTp2tsS_DYlON21mu5aTX9abQW5F15tYbb_0Onocj77db8AzVp8vg</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Feldmann, Sascha</creator><creator>Neumann, Timo</creator><creator>Ciesielski, Richard</creator><creator>Friend, Richard H.</creator><creator>Hartschuh, Achim</creator><creator>Deschler, Felix</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0771-3324</orcidid><orcidid>https://orcid.org/0000-0002-6583-5354</orcidid></search><sort><creationdate>20210901</creationdate><title>Tailored Local Bandgap Modulation as a Strategy to Maximize Luminescence Yields in Mixed‐Halide Perovskites</title><author>Feldmann, Sascha ; Neumann, Timo ; Ciesielski, Richard ; Friend, Richard H. ; Hartschuh, Achim ; Deschler, Felix</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3575-85045c7f35c59de2cd00bb0a4fba1a3d77a89741bbb919b19233fa31254f34ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Current carriers</topic><topic>Energy gap</topic><topic>halide perovskites</topic><topic>halide segregation</topic><topic>Luminescence</topic><topic>Materials science</topic><topic>Modulation</topic><topic>Optics</topic><topic>Optoelectronic devices</topic><topic>optoelectronics</topic><topic>Perovskites</topic><topic>Photoluminescence</topic><topic>Quantum efficiency</topic><topic>Surface energy</topic><topic>Temperature dependence</topic><toplevel>online_resources</toplevel><creatorcontrib>Feldmann, Sascha</creatorcontrib><creatorcontrib>Neumann, Timo</creatorcontrib><creatorcontrib>Ciesielski, Richard</creatorcontrib><creatorcontrib>Friend, Richard H.</creatorcontrib><creatorcontrib>Hartschuh, Achim</creatorcontrib><creatorcontrib>Deschler, Felix</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feldmann, Sascha</au><au>Neumann, Timo</au><au>Ciesielski, Richard</au><au>Friend, Richard H.</au><au>Hartschuh, Achim</au><au>Deschler, Felix</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailored Local Bandgap Modulation as a Strategy to Maximize Luminescence Yields in Mixed‐Halide Perovskites</atitle><jtitle>Advanced optical materials</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>9</volume><issue>18</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Halide perovskites have emerged as high‐performance semiconductors for efficient optoelectronic devices, not least because of their bandgap tunability using mixtures of different halide ions. Here, temperature‐dependent photoluminescence microscopy with computational modelling is combined to quantify the impact of local bandgap variations from disordered halide distributions on the global photoluminescence yield in mixed‐halide perovskite films. It is found that fabrication temperature, surface energy, and charge recombination constants are keys for describing local bandgap variations and charge carrier funneling processes that control the photoluminescence quantum efficiency. It is reported that further luminescence efficiency gains are possible through tailored bandgap modulation, even for materials that have already demonstrated high luminescence yields. The work provides a novel strategy and fabrication guidelines for further improvement of halide perovskite performance in light‐emitting and photovoltaic applications.
Halide perovskite films show remarkable optoelectronic performance although their fabrication from solution should introduce harmful energetic disorder. The authors now quantify regimes where local charge accumulation at energy minima can indeed be beneficial for the luminescence yields, and identify key fabrication factors for their optimization.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202100635</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0771-3324</orcidid><orcidid>https://orcid.org/0000-0002-6583-5354</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-1071 |
ispartof | Advanced optical materials, 2021-09, Vol.9 (18), p.n/a |
issn | 2195-1071 2195-1071 |
language | eng |
recordid | cdi_proquest_journals_2574261279 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Current carriers Energy gap halide perovskites halide segregation Luminescence Materials science Modulation Optics Optoelectronic devices optoelectronics Perovskites Photoluminescence Quantum efficiency Surface energy Temperature dependence |
title | Tailored Local Bandgap Modulation as a Strategy to Maximize Luminescence Yields in Mixed‐Halide Perovskites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A59%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailored%20Local%20Bandgap%20Modulation%20as%20a%20Strategy%20to%20Maximize%20Luminescence%20Yields%20in%20Mixed%E2%80%90Halide%20Perovskites&rft.jtitle=Advanced%20optical%20materials&rft.au=Feldmann,%20Sascha&rft.date=2021-09-01&rft.volume=9&rft.issue=18&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202100635&rft_dat=%3Cproquest_cross%3E2574261279%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574261279&rft_id=info:pmid/&rfr_iscdi=true |