Perovskite Quantum Dots for Super‐Resolution Optical Microscopy: Where Strong Photoluminescence Blinking Matters

Blinking nanoscale emitters, typically single molecules, are employed in single‐molecule localization microscopy (SMLM), such as direct stochastic optical reconstruction microscopy (dSTORM), to overcome Abbe's diffraction limit, offering spatial resolution of few tens of nanometers. Colloidal q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2021-09, Vol.9 (18), p.n/a
Hauptverfasser: Feld, Leon G., Shynkarenko, Yevhen, Krieg, Franziska, Rainò, Gabriele, Kovalenko, Maksym V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 18
container_start_page
container_title Advanced optical materials
container_volume 9
creator Feld, Leon G.
Shynkarenko, Yevhen
Krieg, Franziska
Rainò, Gabriele
Kovalenko, Maksym V.
description Blinking nanoscale emitters, typically single molecules, are employed in single‐molecule localization microscopy (SMLM), such as direct stochastic optical reconstruction microscopy (dSTORM), to overcome Abbe's diffraction limit, offering spatial resolution of few tens of nanometers. Colloidal quantum dots (QDs) feature high photostability, ultrahigh absorption cross‐sections and brightness, as well as wide tunability of the emission properties, making them a compelling alternative to organic molecules. Here, CsPbBr3 nanocrystals, the latest addition to the QD family, are explored as probes in SMLM. Because of the strongly suppressed QD photoluminescence blinking (ON/OFF occurrence higher than 90%), it is difficult to resolve emitters with overlapping point‐spread functions by standard dSTORM methods due to false localizations. A new workflow based on ellipticity filtering efficiently identifies false localizations and allows the precise localization of QDs with subwavelength spatial resolution. Aided by Monte‐Carlo simulations, the optimal QD blinking dynamics for dSTORM applications is identified, harnessing the benefits of higher QD absorption cross‐section and the enhanced QD photostability to further expand the field of QD super‐resolution microscopy toward sub‐nanometer spatial resolution. Fluorescence probes with high photostability and bright emission are in high demand for super‐resolution microscopy. Perovskite quantum dots meet these requirements, but suffer from nonoptimal blinking statistics. A new workflow based on ellipticity filtering proves to be efficient in identifying the large fraction of false localizations. The engineerability of perovskite quantum dots can now be exploited toward sub‐nanometer spatial resolution.
doi_str_mv 10.1002/adom.202100620
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2574260643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574260643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3570-55ee9842fcef93f7ad0a41f937086c9201f12f21aa94f4a1d8d4ed6c523f1ca73</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhSMEElXplrUl1im24yQNu9LyJ7UqUBBLy3LG1G0aB9sBdccROCMnwVURsGM1bzTfm9G8KDomuE8wpqeiNOs-xTQ0GcV7UYeSIo0Jzsn-H30Y9ZxbYoxDkxQs70T2Fqx5dSvtAd21ovbtGo2Nd0gZi-ZtA_bz_eMenKlar02NZo3XUlRoqqU1Tppmc4aeFmABzb019TO6XRgf4LWuwUmoJaDzStcrHUZT4T1YdxQdKFE56H3XbvR4efEwuo4ns6ub0XASyyTNcZymAMWAUSVBFYnKRYkFI0HmeJDJgmKiCFWUCFEwxQQpByWDMpMpTRSRIk-60club2PNSwvO86VpbR1OcprmjGY4Y0mg-jtq-4-zoHhj9VrYDSeYb6Pl22j5T7TBUOwMb7qCzT80H45n01_vF6yOgBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574260643</pqid></control><display><type>article</type><title>Perovskite Quantum Dots for Super‐Resolution Optical Microscopy: Where Strong Photoluminescence Blinking Matters</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Feld, Leon G. ; Shynkarenko, Yevhen ; Krieg, Franziska ; Rainò, Gabriele ; Kovalenko, Maksym V.</creator><creatorcontrib>Feld, Leon G. ; Shynkarenko, Yevhen ; Krieg, Franziska ; Rainò, Gabriele ; Kovalenko, Maksym V.</creatorcontrib><description>Blinking nanoscale emitters, typically single molecules, are employed in single‐molecule localization microscopy (SMLM), such as direct stochastic optical reconstruction microscopy (dSTORM), to overcome Abbe's diffraction limit, offering spatial resolution of few tens of nanometers. Colloidal quantum dots (QDs) feature high photostability, ultrahigh absorption cross‐sections and brightness, as well as wide tunability of the emission properties, making them a compelling alternative to organic molecules. Here, CsPbBr3 nanocrystals, the latest addition to the QD family, are explored as probes in SMLM. Because of the strongly suppressed QD photoluminescence blinking (ON/OFF occurrence higher than 90%), it is difficult to resolve emitters with overlapping point‐spread functions by standard dSTORM methods due to false localizations. A new workflow based on ellipticity filtering efficiently identifies false localizations and allows the precise localization of QDs with subwavelength spatial resolution. Aided by Monte‐Carlo simulations, the optimal QD blinking dynamics for dSTORM applications is identified, harnessing the benefits of higher QD absorption cross‐section and the enhanced QD photostability to further expand the field of QD super‐resolution microscopy toward sub‐nanometer spatial resolution. Fluorescence probes with high photostability and bright emission are in high demand for super‐resolution microscopy. Perovskite quantum dots meet these requirements, but suffer from nonoptimal blinking statistics. A new workflow based on ellipticity filtering proves to be efficient in identifying the large fraction of false localizations. The engineerability of perovskite quantum dots can now be exploited toward sub‐nanometer spatial resolution.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202100620</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Absorption ; Blinking ; Ellipticity ; Emitters ; Localization ; Materials science ; Microscopes ; Microscopy ; Nanocrystals ; Optical microscopy ; Optics ; Organic chemistry ; Perovskites ; Photoluminescence ; Quantum dots ; semiconductor nanocrystals ; Spatial resolution ; super‐resolution microscopy ; Workflow</subject><ispartof>Advanced optical materials, 2021-09, Vol.9 (18), p.n/a</ispartof><rights>2021 The Authors. Advanced Optical Materials published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3570-55ee9842fcef93f7ad0a41f937086c9201f12f21aa94f4a1d8d4ed6c523f1ca73</citedby><cites>FETCH-LOGICAL-c3570-55ee9842fcef93f7ad0a41f937086c9201f12f21aa94f4a1d8d4ed6c523f1ca73</cites><orcidid>0000-0002-6396-8938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202100620$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202100620$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Feld, Leon G.</creatorcontrib><creatorcontrib>Shynkarenko, Yevhen</creatorcontrib><creatorcontrib>Krieg, Franziska</creatorcontrib><creatorcontrib>Rainò, Gabriele</creatorcontrib><creatorcontrib>Kovalenko, Maksym V.</creatorcontrib><title>Perovskite Quantum Dots for Super‐Resolution Optical Microscopy: Where Strong Photoluminescence Blinking Matters</title><title>Advanced optical materials</title><description>Blinking nanoscale emitters, typically single molecules, are employed in single‐molecule localization microscopy (SMLM), such as direct stochastic optical reconstruction microscopy (dSTORM), to overcome Abbe's diffraction limit, offering spatial resolution of few tens of nanometers. Colloidal quantum dots (QDs) feature high photostability, ultrahigh absorption cross‐sections and brightness, as well as wide tunability of the emission properties, making them a compelling alternative to organic molecules. Here, CsPbBr3 nanocrystals, the latest addition to the QD family, are explored as probes in SMLM. Because of the strongly suppressed QD photoluminescence blinking (ON/OFF occurrence higher than 90%), it is difficult to resolve emitters with overlapping point‐spread functions by standard dSTORM methods due to false localizations. A new workflow based on ellipticity filtering efficiently identifies false localizations and allows the precise localization of QDs with subwavelength spatial resolution. Aided by Monte‐Carlo simulations, the optimal QD blinking dynamics for dSTORM applications is identified, harnessing the benefits of higher QD absorption cross‐section and the enhanced QD photostability to further expand the field of QD super‐resolution microscopy toward sub‐nanometer spatial resolution. Fluorescence probes with high photostability and bright emission are in high demand for super‐resolution microscopy. Perovskite quantum dots meet these requirements, but suffer from nonoptimal blinking statistics. A new workflow based on ellipticity filtering proves to be efficient in identifying the large fraction of false localizations. The engineerability of perovskite quantum dots can now be exploited toward sub‐nanometer spatial resolution.</description><subject>Absorption</subject><subject>Blinking</subject><subject>Ellipticity</subject><subject>Emitters</subject><subject>Localization</subject><subject>Materials science</subject><subject>Microscopes</subject><subject>Microscopy</subject><subject>Nanocrystals</subject><subject>Optical microscopy</subject><subject>Optics</subject><subject>Organic chemistry</subject><subject>Perovskites</subject><subject>Photoluminescence</subject><subject>Quantum dots</subject><subject>semiconductor nanocrystals</subject><subject>Spatial resolution</subject><subject>super‐resolution microscopy</subject><subject>Workflow</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkE1OwzAQhSMEElXplrUl1im24yQNu9LyJ7UqUBBLy3LG1G0aB9sBdccROCMnwVURsGM1bzTfm9G8KDomuE8wpqeiNOs-xTQ0GcV7UYeSIo0Jzsn-H30Y9ZxbYoxDkxQs70T2Fqx5dSvtAd21ovbtGo2Nd0gZi-ZtA_bz_eMenKlar02NZo3XUlRoqqU1Tppmc4aeFmABzb019TO6XRgf4LWuwUmoJaDzStcrHUZT4T1YdxQdKFE56H3XbvR4efEwuo4ns6ub0XASyyTNcZymAMWAUSVBFYnKRYkFI0HmeJDJgmKiCFWUCFEwxQQpByWDMpMpTRSRIk-60club2PNSwvO86VpbR1OcprmjGY4Y0mg-jtq-4-zoHhj9VrYDSeYb6Pl22j5T7TBUOwMb7qCzT80H45n01_vF6yOgBA</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Feld, Leon G.</creator><creator>Shynkarenko, Yevhen</creator><creator>Krieg, Franziska</creator><creator>Rainò, Gabriele</creator><creator>Kovalenko, Maksym V.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6396-8938</orcidid></search><sort><creationdate>20210901</creationdate><title>Perovskite Quantum Dots for Super‐Resolution Optical Microscopy: Where Strong Photoluminescence Blinking Matters</title><author>Feld, Leon G. ; Shynkarenko, Yevhen ; Krieg, Franziska ; Rainò, Gabriele ; Kovalenko, Maksym V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3570-55ee9842fcef93f7ad0a41f937086c9201f12f21aa94f4a1d8d4ed6c523f1ca73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption</topic><topic>Blinking</topic><topic>Ellipticity</topic><topic>Emitters</topic><topic>Localization</topic><topic>Materials science</topic><topic>Microscopes</topic><topic>Microscopy</topic><topic>Nanocrystals</topic><topic>Optical microscopy</topic><topic>Optics</topic><topic>Organic chemistry</topic><topic>Perovskites</topic><topic>Photoluminescence</topic><topic>Quantum dots</topic><topic>semiconductor nanocrystals</topic><topic>Spatial resolution</topic><topic>super‐resolution microscopy</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Feld, Leon G.</creatorcontrib><creatorcontrib>Shynkarenko, Yevhen</creatorcontrib><creatorcontrib>Krieg, Franziska</creatorcontrib><creatorcontrib>Rainò, Gabriele</creatorcontrib><creatorcontrib>Kovalenko, Maksym V.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feld, Leon G.</au><au>Shynkarenko, Yevhen</au><au>Krieg, Franziska</au><au>Rainò, Gabriele</au><au>Kovalenko, Maksym V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perovskite Quantum Dots for Super‐Resolution Optical Microscopy: Where Strong Photoluminescence Blinking Matters</atitle><jtitle>Advanced optical materials</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>9</volume><issue>18</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Blinking nanoscale emitters, typically single molecules, are employed in single‐molecule localization microscopy (SMLM), such as direct stochastic optical reconstruction microscopy (dSTORM), to overcome Abbe's diffraction limit, offering spatial resolution of few tens of nanometers. Colloidal quantum dots (QDs) feature high photostability, ultrahigh absorption cross‐sections and brightness, as well as wide tunability of the emission properties, making them a compelling alternative to organic molecules. Here, CsPbBr3 nanocrystals, the latest addition to the QD family, are explored as probes in SMLM. Because of the strongly suppressed QD photoluminescence blinking (ON/OFF occurrence higher than 90%), it is difficult to resolve emitters with overlapping point‐spread functions by standard dSTORM methods due to false localizations. A new workflow based on ellipticity filtering efficiently identifies false localizations and allows the precise localization of QDs with subwavelength spatial resolution. Aided by Monte‐Carlo simulations, the optimal QD blinking dynamics for dSTORM applications is identified, harnessing the benefits of higher QD absorption cross‐section and the enhanced QD photostability to further expand the field of QD super‐resolution microscopy toward sub‐nanometer spatial resolution. Fluorescence probes with high photostability and bright emission are in high demand for super‐resolution microscopy. Perovskite quantum dots meet these requirements, but suffer from nonoptimal blinking statistics. A new workflow based on ellipticity filtering proves to be efficient in identifying the large fraction of false localizations. The engineerability of perovskite quantum dots can now be exploited toward sub‐nanometer spatial resolution.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202100620</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6396-8938</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2021-09, Vol.9 (18), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_2574260643
source Wiley Online Library Journals Frontfile Complete
subjects Absorption
Blinking
Ellipticity
Emitters
Localization
Materials science
Microscopes
Microscopy
Nanocrystals
Optical microscopy
Optics
Organic chemistry
Perovskites
Photoluminescence
Quantum dots
semiconductor nanocrystals
Spatial resolution
super‐resolution microscopy
Workflow
title Perovskite Quantum Dots for Super‐Resolution Optical Microscopy: Where Strong Photoluminescence Blinking Matters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A11%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perovskite%20Quantum%20Dots%20for%20Super%E2%80%90Resolution%20Optical%20Microscopy:%20Where%20Strong%20Photoluminescence%20Blinking%20Matters&rft.jtitle=Advanced%20optical%20materials&rft.au=Feld,%20Leon%20G.&rft.date=2021-09-01&rft.volume=9&rft.issue=18&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202100620&rft_dat=%3Cproquest_cross%3E2574260643%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574260643&rft_id=info:pmid/&rfr_iscdi=true