Fruit Classification Utilizing a Robotic Gripper with Integrated Sensors and Adaptive Grasping

As the core component of agricultural robots, robotic grippers are widely used for plucking, picking, and harvesting fruits and vegetables. Secure grasping is a severe challenge in agricultural applications because of the variation in the shape and hardness of agricultural products during maturation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2021, Vol.2021, p.1-15
Hauptverfasser: Zhang, Jintao, Lai, Shuang, Yu, Huahua, Wang, Erjie, Wang, Xizhe, Zhu, Zixuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2021
creator Zhang, Jintao
Lai, Shuang
Yu, Huahua
Wang, Erjie
Wang, Xizhe
Zhu, Zixuan
description As the core component of agricultural robots, robotic grippers are widely used for plucking, picking, and harvesting fruits and vegetables. Secure grasping is a severe challenge in agricultural applications because of the variation in the shape and hardness of agricultural products during maturation, as well as their variety and delicacy. In this study, a fruit identification method utilizing an adaptive gripper with tactile sensing and machine learning algorithms is reported. An adaptive robotic gripper is designed and manufactured to perform adaptive grasping. A tactile sensing information acquisition circuit is built, and force and bending sensors are integrated into the robotic gripper to measure the contact force distribution on the contact surface and the deformation of the soft fingers. A robotic manipulator platform is developed to collect the tactile sensing data in the grasping process. The performance of the random forest (RF), k-nearest neighbor (KNN), support vector classification (SVC), naive Bayes (NB), linear discriminant analysis (LDA), and ridge regression (RR) classifiers in identifying and classifying five types of fruits using the adaptive gripper is evaluated and compared. The RF classifier achieves the highest accuracy of 98%, while the accuracies of the other classifiers vary from 74% to 97%. The experiment illustrates that efficient and accurate fruit identification can be realized with the adaptive gripper and machine learning classifiers, and that the proposed method can provide a reference for controlling the grasping force and planning the robotic motion in the plucking, picking, and harvesting of fruits and vegetables.
doi_str_mv 10.1155/2021/7157763
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2574088977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574088977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-89661c09bda514f7e6e2ebd4e0a40beef2fdc5aec532e1ceee00a693e850c4133</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtbqzgcIuNSxuUwmM8tSbC0UBLXgypDJnGlT6mRMUos-vZF27eqcxXcu_AhdU3JPqRAjRhgdSSqkLPgJGlBR8EzQXJ6mnrA8o4y_naOLEDYkSUHLAXqf-p2NeLLVIdjWGh2t6_Ay2q39sd0Ka_zsahetwTNv-x483tu4xvMuwsrrCA1-gS44H7DuGjxudB_tFySsQ5_mL9FZq7cBro51iJbTh9fJY7Z4ms0n40VmOJcxK6uioIZUdaPTv62EAhjUTQ5E56QGaFnbGKHBCM6AGgAgRBcVh1IQk1POh-jmsLf37nMHIaqN2_kunVRMyJyUZSVlUncHZbwLwUOrem8_tP9WlKi_BNVfguqYYOK3B762XaP39n_9C-f0cXs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574088977</pqid></control><display><type>article</type><title>Fruit Classification Utilizing a Robotic Gripper with Integrated Sensors and Adaptive Grasping</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Zhang, Jintao ; Lai, Shuang ; Yu, Huahua ; Wang, Erjie ; Wang, Xizhe ; Zhu, Zixuan</creator><contributor>Tang, Yunchao ; Yunchao Tang</contributor><creatorcontrib>Zhang, Jintao ; Lai, Shuang ; Yu, Huahua ; Wang, Erjie ; Wang, Xizhe ; Zhu, Zixuan ; Tang, Yunchao ; Yunchao Tang</creatorcontrib><description>As the core component of agricultural robots, robotic grippers are widely used for plucking, picking, and harvesting fruits and vegetables. Secure grasping is a severe challenge in agricultural applications because of the variation in the shape and hardness of agricultural products during maturation, as well as their variety and delicacy. In this study, a fruit identification method utilizing an adaptive gripper with tactile sensing and machine learning algorithms is reported. An adaptive robotic gripper is designed and manufactured to perform adaptive grasping. A tactile sensing information acquisition circuit is built, and force and bending sensors are integrated into the robotic gripper to measure the contact force distribution on the contact surface and the deformation of the soft fingers. A robotic manipulator platform is developed to collect the tactile sensing data in the grasping process. The performance of the random forest (RF), k-nearest neighbor (KNN), support vector classification (SVC), naive Bayes (NB), linear discriminant analysis (LDA), and ridge regression (RR) classifiers in identifying and classifying five types of fruits using the adaptive gripper is evaluated and compared. The RF classifier achieves the highest accuracy of 98%, while the accuracies of the other classifiers vary from 74% to 97%. The experiment illustrates that efficient and accurate fruit identification can be realized with the adaptive gripper and machine learning classifiers, and that the proposed method can provide a reference for controlling the grasping force and planning the robotic motion in the plucking, picking, and harvesting of fruits and vegetables.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2021/7157763</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Agricultural production ; Algorithms ; Circuits ; Classification ; Classifiers ; Contact force ; Data processing ; Deformation ; Design ; Discriminant analysis ; Engineering ; Force distribution ; Fruits ; Grasping (robotics) ; Grasping force ; Grippers ; Harvesting ; Identification ; Identification methods ; Machine learning ; Methods ; Perceptions ; Picking ; Plucking ; Principal components analysis ; Robot arms ; Robotics ; Robots ; Sensors ; Tactile sensors (robotics) ; Vegetables</subject><ispartof>Mathematical problems in engineering, 2021, Vol.2021, p.1-15</ispartof><rights>Copyright © 2021 Jintao Zhang et al.</rights><rights>Copyright © 2021 Jintao Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-89661c09bda514f7e6e2ebd4e0a40beef2fdc5aec532e1ceee00a693e850c4133</citedby><cites>FETCH-LOGICAL-c337t-89661c09bda514f7e6e2ebd4e0a40beef2fdc5aec532e1ceee00a693e850c4133</cites><orcidid>0000-0002-8218-7563 ; 0000-0001-5798-2373 ; 0000-0002-3086-6767 ; 0000-0002-3015-4911 ; 0000-0001-8815-9451 ; 0000-0002-4899-4556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><contributor>Tang, Yunchao</contributor><contributor>Yunchao Tang</contributor><creatorcontrib>Zhang, Jintao</creatorcontrib><creatorcontrib>Lai, Shuang</creatorcontrib><creatorcontrib>Yu, Huahua</creatorcontrib><creatorcontrib>Wang, Erjie</creatorcontrib><creatorcontrib>Wang, Xizhe</creatorcontrib><creatorcontrib>Zhu, Zixuan</creatorcontrib><title>Fruit Classification Utilizing a Robotic Gripper with Integrated Sensors and Adaptive Grasping</title><title>Mathematical problems in engineering</title><description>As the core component of agricultural robots, robotic grippers are widely used for plucking, picking, and harvesting fruits and vegetables. Secure grasping is a severe challenge in agricultural applications because of the variation in the shape and hardness of agricultural products during maturation, as well as their variety and delicacy. In this study, a fruit identification method utilizing an adaptive gripper with tactile sensing and machine learning algorithms is reported. An adaptive robotic gripper is designed and manufactured to perform adaptive grasping. A tactile sensing information acquisition circuit is built, and force and bending sensors are integrated into the robotic gripper to measure the contact force distribution on the contact surface and the deformation of the soft fingers. A robotic manipulator platform is developed to collect the tactile sensing data in the grasping process. The performance of the random forest (RF), k-nearest neighbor (KNN), support vector classification (SVC), naive Bayes (NB), linear discriminant analysis (LDA), and ridge regression (RR) classifiers in identifying and classifying five types of fruits using the adaptive gripper is evaluated and compared. The RF classifier achieves the highest accuracy of 98%, while the accuracies of the other classifiers vary from 74% to 97%. The experiment illustrates that efficient and accurate fruit identification can be realized with the adaptive gripper and machine learning classifiers, and that the proposed method can provide a reference for controlling the grasping force and planning the robotic motion in the plucking, picking, and harvesting of fruits and vegetables.</description><subject>Agricultural production</subject><subject>Algorithms</subject><subject>Circuits</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Contact force</subject><subject>Data processing</subject><subject>Deformation</subject><subject>Design</subject><subject>Discriminant analysis</subject><subject>Engineering</subject><subject>Force distribution</subject><subject>Fruits</subject><subject>Grasping (robotics)</subject><subject>Grasping force</subject><subject>Grippers</subject><subject>Harvesting</subject><subject>Identification</subject><subject>Identification methods</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Perceptions</subject><subject>Picking</subject><subject>Plucking</subject><subject>Principal components analysis</subject><subject>Robot arms</subject><subject>Robotics</subject><subject>Robots</subject><subject>Sensors</subject><subject>Tactile sensors (robotics)</subject><subject>Vegetables</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp90MtKAzEUBuAgCtbqzgcIuNSxuUwmM8tSbC0UBLXgypDJnGlT6mRMUos-vZF27eqcxXcu_AhdU3JPqRAjRhgdSSqkLPgJGlBR8EzQXJ6mnrA8o4y_naOLEDYkSUHLAXqf-p2NeLLVIdjWGh2t6_Ay2q39sd0Ka_zsahetwTNv-x483tu4xvMuwsrrCA1-gS44H7DuGjxudB_tFySsQ5_mL9FZq7cBro51iJbTh9fJY7Z4ms0n40VmOJcxK6uioIZUdaPTv62EAhjUTQ5E56QGaFnbGKHBCM6AGgAgRBcVh1IQk1POh-jmsLf37nMHIaqN2_kunVRMyJyUZSVlUncHZbwLwUOrem8_tP9WlKi_BNVfguqYYOK3B762XaP39n_9C-f0cXs</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zhang, Jintao</creator><creator>Lai, Shuang</creator><creator>Yu, Huahua</creator><creator>Wang, Erjie</creator><creator>Wang, Xizhe</creator><creator>Zhu, Zixuan</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-8218-7563</orcidid><orcidid>https://orcid.org/0000-0001-5798-2373</orcidid><orcidid>https://orcid.org/0000-0002-3086-6767</orcidid><orcidid>https://orcid.org/0000-0002-3015-4911</orcidid><orcidid>https://orcid.org/0000-0001-8815-9451</orcidid><orcidid>https://orcid.org/0000-0002-4899-4556</orcidid></search><sort><creationdate>2021</creationdate><title>Fruit Classification Utilizing a Robotic Gripper with Integrated Sensors and Adaptive Grasping</title><author>Zhang, Jintao ; Lai, Shuang ; Yu, Huahua ; Wang, Erjie ; Wang, Xizhe ; Zhu, Zixuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-89661c09bda514f7e6e2ebd4e0a40beef2fdc5aec532e1ceee00a693e850c4133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agricultural production</topic><topic>Algorithms</topic><topic>Circuits</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Contact force</topic><topic>Data processing</topic><topic>Deformation</topic><topic>Design</topic><topic>Discriminant analysis</topic><topic>Engineering</topic><topic>Force distribution</topic><topic>Fruits</topic><topic>Grasping (robotics)</topic><topic>Grasping force</topic><topic>Grippers</topic><topic>Harvesting</topic><topic>Identification</topic><topic>Identification methods</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Perceptions</topic><topic>Picking</topic><topic>Plucking</topic><topic>Principal components analysis</topic><topic>Robot arms</topic><topic>Robotics</topic><topic>Robots</topic><topic>Sensors</topic><topic>Tactile sensors (robotics)</topic><topic>Vegetables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jintao</creatorcontrib><creatorcontrib>Lai, Shuang</creatorcontrib><creatorcontrib>Yu, Huahua</creatorcontrib><creatorcontrib>Wang, Erjie</creatorcontrib><creatorcontrib>Wang, Xizhe</creatorcontrib><creatorcontrib>Zhu, Zixuan</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jintao</au><au>Lai, Shuang</au><au>Yu, Huahua</au><au>Wang, Erjie</au><au>Wang, Xizhe</au><au>Zhu, Zixuan</au><au>Tang, Yunchao</au><au>Yunchao Tang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fruit Classification Utilizing a Robotic Gripper with Integrated Sensors and Adaptive Grasping</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>As the core component of agricultural robots, robotic grippers are widely used for plucking, picking, and harvesting fruits and vegetables. Secure grasping is a severe challenge in agricultural applications because of the variation in the shape and hardness of agricultural products during maturation, as well as their variety and delicacy. In this study, a fruit identification method utilizing an adaptive gripper with tactile sensing and machine learning algorithms is reported. An adaptive robotic gripper is designed and manufactured to perform adaptive grasping. A tactile sensing information acquisition circuit is built, and force and bending sensors are integrated into the robotic gripper to measure the contact force distribution on the contact surface and the deformation of the soft fingers. A robotic manipulator platform is developed to collect the tactile sensing data in the grasping process. The performance of the random forest (RF), k-nearest neighbor (KNN), support vector classification (SVC), naive Bayes (NB), linear discriminant analysis (LDA), and ridge regression (RR) classifiers in identifying and classifying five types of fruits using the adaptive gripper is evaluated and compared. The RF classifier achieves the highest accuracy of 98%, while the accuracies of the other classifiers vary from 74% to 97%. The experiment illustrates that efficient and accurate fruit identification can be realized with the adaptive gripper and machine learning classifiers, and that the proposed method can provide a reference for controlling the grasping force and planning the robotic motion in the plucking, picking, and harvesting of fruits and vegetables.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/7157763</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8218-7563</orcidid><orcidid>https://orcid.org/0000-0001-5798-2373</orcidid><orcidid>https://orcid.org/0000-0002-3086-6767</orcidid><orcidid>https://orcid.org/0000-0002-3015-4911</orcidid><orcidid>https://orcid.org/0000-0001-8815-9451</orcidid><orcidid>https://orcid.org/0000-0002-4899-4556</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2021, Vol.2021, p.1-15
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2574088977
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection
subjects Agricultural production
Algorithms
Circuits
Classification
Classifiers
Contact force
Data processing
Deformation
Design
Discriminant analysis
Engineering
Force distribution
Fruits
Grasping (robotics)
Grasping force
Grippers
Harvesting
Identification
Identification methods
Machine learning
Methods
Perceptions
Picking
Plucking
Principal components analysis
Robot arms
Robotics
Robots
Sensors
Tactile sensors (robotics)
Vegetables
title Fruit Classification Utilizing a Robotic Gripper with Integrated Sensors and Adaptive Grasping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A50%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fruit%20Classification%20Utilizing%20a%20Robotic%20Gripper%20with%20Integrated%20Sensors%20and%20Adaptive%20Grasping&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Zhang,%20Jintao&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2021/7157763&rft_dat=%3Cproquest_cross%3E2574088977%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574088977&rft_id=info:pmid/&rfr_iscdi=true