Numerical solution using radial basis functions for multidimensional fractional partial differential equations of type Black–Scholes

In this paper, as far as the authors know, for the first time, a one-dimensional partial differential model is generalized using fractional differential operators and the same principle that provides the dimensional invariance of the radial basis functions methodology, resulting in a multidimensiona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational & applied mathematics 2021-10, Vol.40 (7), Article 245
Hauptverfasser: Torres-Hernandez, A., Brambila-Paz, F., Torres-Martínez, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Computational & applied mathematics
container_volume 40
creator Torres-Hernandez, A.
Brambila-Paz, F.
Torres-Martínez, C.
description In this paper, as far as the authors know, for the first time, a one-dimensional partial differential model is generalized using fractional differential operators and the same principle that provides the dimensional invariance of the radial basis functions methodology, resulting in a multidimensional fractional partial differential model that can be solved using a numerical scheme of radial basis functions. A radial basis functions scheme is proposed to solve numerically, on different node configurations, multidimensional fractional partial differential equations, both in space and in time. Using the QR factorization, a way to reduce the condition number of the interpolation matrices of the proposed scheme is presented, the resulting scheme is used to numerically solve the diffusion equation that may be obtained from the Black–Scholes model, as well as some generalizations of this diffusion model with fractional differential operators and multiple dimensions. The Caputo fractional derivative is discretized with an order error O ( d t n - α + 1 ) , with ( n - 1 ) < α ≤ n . The examples of fractional partial differential equations that are presented involve the Caputo fractional operator in the temporal part due to the memory phenomenon, and the Riemann–Liouville fractional operator in the spatial part due to the property of nonlocality.
doi_str_mv 10.1007/s40314-021-01634-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2574028634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574028634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-57f691b30552c05fd7dae9cba15d3e6d83cb0eb7b0b0f467d38c974ac1f68fb33</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EEqVwAVaRWAfGj8TJEipeUgULYG3Zjl1c8mjtZEFXrLgAN-QkuA0SO1Yez_zfaPQhdIrhHAPwi8CAYpYCwSngnLJ0s4cmuACeAgWyjyaE0CKlOdBDdBTCEoByzNgEfT4MjfFOyzoJXT30rmuTIbh2kXhZudhVMriQ2KHV21msOp80Q927yjWmDbEXQ9bL3TiWK-n7LVc5a4037e5j1oMc8c4m_fvKJFe11G_fH19P-rWrTThGB1bWwZz8vlP0cnP9PLtL54-397PLeaopLvs04zYvsaKQZURDZiteSVNqJXFWUZNXBdUKjOIKFFiW84oWuuRMamzzwipKp-hs3Lvy3XowoRfLbvDx7iBIxhmQIsqLKTKmtO9C8MaKlXeN9O8Cg9j6FqNvEX2LnW-xiRAdoRDD7cL4v9X_UD-OQYjy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574028634</pqid></control><display><type>article</type><title>Numerical solution using radial basis functions for multidimensional fractional partial differential equations of type Black–Scholes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Torres-Hernandez, A. ; Brambila-Paz, F. ; Torres-Martínez, C.</creator><creatorcontrib>Torres-Hernandez, A. ; Brambila-Paz, F. ; Torres-Martínez, C.</creatorcontrib><description>In this paper, as far as the authors know, for the first time, a one-dimensional partial differential model is generalized using fractional differential operators and the same principle that provides the dimensional invariance of the radial basis functions methodology, resulting in a multidimensional fractional partial differential model that can be solved using a numerical scheme of radial basis functions. A radial basis functions scheme is proposed to solve numerically, on different node configurations, multidimensional fractional partial differential equations, both in space and in time. Using the QR factorization, a way to reduce the condition number of the interpolation matrices of the proposed scheme is presented, the resulting scheme is used to numerically solve the diffusion equation that may be obtained from the Black–Scholes model, as well as some generalizations of this diffusion model with fractional differential operators and multiple dimensions. The Caputo fractional derivative is discretized with an order error O ( d t n - α + 1 ) , with ( n - 1 ) &lt; α ≤ n . The examples of fractional partial differential equations that are presented involve the Caputo fractional operator in the temporal part due to the memory phenomenon, and the Riemann–Liouville fractional operator in the spatial part due to the property of nonlocality.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-021-01634-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Applied physics ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Interpolation ; Mathematical analysis ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Partial differential equations ; Radial basis function</subject><ispartof>Computational &amp; applied mathematics, 2021-10, Vol.40 (7), Article 245</ispartof><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2021</rights><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-57f691b30552c05fd7dae9cba15d3e6d83cb0eb7b0b0f467d38c974ac1f68fb33</citedby><cites>FETCH-LOGICAL-c319t-57f691b30552c05fd7dae9cba15d3e6d83cb0eb7b0b0f467d38c974ac1f68fb33</cites><orcidid>0000-0001-6496-9505 ; 0000-0001-7896-6460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40314-021-01634-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40314-021-01634-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Torres-Hernandez, A.</creatorcontrib><creatorcontrib>Brambila-Paz, F.</creatorcontrib><creatorcontrib>Torres-Martínez, C.</creatorcontrib><title>Numerical solution using radial basis functions for multidimensional fractional partial differential equations of type Black–Scholes</title><title>Computational &amp; applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>In this paper, as far as the authors know, for the first time, a one-dimensional partial differential model is generalized using fractional differential operators and the same principle that provides the dimensional invariance of the radial basis functions methodology, resulting in a multidimensional fractional partial differential model that can be solved using a numerical scheme of radial basis functions. A radial basis functions scheme is proposed to solve numerically, on different node configurations, multidimensional fractional partial differential equations, both in space and in time. Using the QR factorization, a way to reduce the condition number of the interpolation matrices of the proposed scheme is presented, the resulting scheme is used to numerically solve the diffusion equation that may be obtained from the Black–Scholes model, as well as some generalizations of this diffusion model with fractional differential operators and multiple dimensions. The Caputo fractional derivative is discretized with an order error O ( d t n - α + 1 ) , with ( n - 1 ) &lt; α ≤ n . The examples of fractional partial differential equations that are presented involve the Caputo fractional operator in the temporal part due to the memory phenomenon, and the Riemann–Liouville fractional operator in the spatial part due to the property of nonlocality.</description><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Partial differential equations</subject><subject>Radial basis function</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQhi0EEqVwAVaRWAfGj8TJEipeUgULYG3Zjl1c8mjtZEFXrLgAN-QkuA0SO1Yez_zfaPQhdIrhHAPwi8CAYpYCwSngnLJ0s4cmuACeAgWyjyaE0CKlOdBDdBTCEoByzNgEfT4MjfFOyzoJXT30rmuTIbh2kXhZudhVMriQ2KHV21msOp80Q927yjWmDbEXQ9bL3TiWK-n7LVc5a4037e5j1oMc8c4m_fvKJFe11G_fH19P-rWrTThGB1bWwZz8vlP0cnP9PLtL54-397PLeaopLvs04zYvsaKQZURDZiteSVNqJXFWUZNXBdUKjOIKFFiW84oWuuRMamzzwipKp-hs3Lvy3XowoRfLbvDx7iBIxhmQIsqLKTKmtO9C8MaKlXeN9O8Cg9j6FqNvEX2LnW-xiRAdoRDD7cL4v9X_UD-OQYjy</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Torres-Hernandez, A.</creator><creator>Brambila-Paz, F.</creator><creator>Torres-Martínez, C.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6496-9505</orcidid><orcidid>https://orcid.org/0000-0001-7896-6460</orcidid></search><sort><creationdate>20211001</creationdate><title>Numerical solution using radial basis functions for multidimensional fractional partial differential equations of type Black–Scholes</title><author>Torres-Hernandez, A. ; Brambila-Paz, F. ; Torres-Martínez, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-57f691b30552c05fd7dae9cba15d3e6d83cb0eb7b0b0f467d38c974ac1f68fb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Partial differential equations</topic><topic>Radial basis function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torres-Hernandez, A.</creatorcontrib><creatorcontrib>Brambila-Paz, F.</creatorcontrib><creatorcontrib>Torres-Martínez, C.</creatorcontrib><collection>CrossRef</collection><jtitle>Computational &amp; applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torres-Hernandez, A.</au><au>Brambila-Paz, F.</au><au>Torres-Martínez, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solution using radial basis functions for multidimensional fractional partial differential equations of type Black–Scholes</atitle><jtitle>Computational &amp; applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>40</volume><issue>7</issue><artnum>245</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>In this paper, as far as the authors know, for the first time, a one-dimensional partial differential model is generalized using fractional differential operators and the same principle that provides the dimensional invariance of the radial basis functions methodology, resulting in a multidimensional fractional partial differential model that can be solved using a numerical scheme of radial basis functions. A radial basis functions scheme is proposed to solve numerically, on different node configurations, multidimensional fractional partial differential equations, both in space and in time. Using the QR factorization, a way to reduce the condition number of the interpolation matrices of the proposed scheme is presented, the resulting scheme is used to numerically solve the diffusion equation that may be obtained from the Black–Scholes model, as well as some generalizations of this diffusion model with fractional differential operators and multiple dimensions. The Caputo fractional derivative is discretized with an order error O ( d t n - α + 1 ) , with ( n - 1 ) &lt; α ≤ n . The examples of fractional partial differential equations that are presented involve the Caputo fractional operator in the temporal part due to the memory phenomenon, and the Riemann–Liouville fractional operator in the spatial part due to the property of nonlocality.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-021-01634-z</doi><orcidid>https://orcid.org/0000-0001-6496-9505</orcidid><orcidid>https://orcid.org/0000-0001-7896-6460</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2238-3603
ispartof Computational & applied mathematics, 2021-10, Vol.40 (7), Article 245
issn 2238-3603
1807-0302
language eng
recordid cdi_proquest_journals_2574028634
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Applied physics
Computational mathematics
Computational Mathematics and Numerical Analysis
Interpolation
Mathematical analysis
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematical models
Mathematics
Mathematics and Statistics
Operators (mathematics)
Partial differential equations
Radial basis function
title Numerical solution using radial basis functions for multidimensional fractional partial differential equations of type Black–Scholes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A21%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solution%20using%20radial%20basis%20functions%20for%20multidimensional%20fractional%20partial%20differential%20equations%20of%20type%20Black%E2%80%93Scholes&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Torres-Hernandez,%20A.&rft.date=2021-10-01&rft.volume=40&rft.issue=7&rft.artnum=245&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-021-01634-z&rft_dat=%3Cproquest_cross%3E2574028634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574028634&rft_id=info:pmid/&rfr_iscdi=true