Recent development of feature extraction and classification multispectral/hyperspectral images: a systematic literature review

Multispectral data and hyperspectral data acquired from satellite sensor have the ability in detecting various objects on the earth ranging from low scale to high scale modeling. These data are increasingly being used to produce geospatial information for rapid analysis by running feature extraction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2017-01, Vol.801 (1), p.12045
Hauptverfasser: Setiyoko, A, Dharma, I G W S, Haryanto, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12045
container_title Journal of physics. Conference series
container_volume 801
creator Setiyoko, A
Dharma, I G W S
Haryanto, T
description Multispectral data and hyperspectral data acquired from satellite sensor have the ability in detecting various objects on the earth ranging from low scale to high scale modeling. These data are increasingly being used to produce geospatial information for rapid analysis by running feature extraction or classification process. Applying the most suited model for this data mining is still challenging because there are issues regarding accuracy and computational cost. This research aim is to develop a better understanding regarding object feature extraction and classification applied for satellite image by systematically reviewing related recent research projects. A method used in this research is based on PRISMA statement. After deriving important points from trusted sources, pixel based and texture-based feature extraction techniques are promising technique to be analyzed more in recent development of feature extraction and classification.
doi_str_mv 10.1088/1742-6596/801/1/012045
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2573811667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2573811667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-ac186a22f9555ba9236d20c734990c9e8c8ba4edc1010cb35d82a89b6b78db883</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYsoOI7-BQm4cjE2Sds0dSeDTwYUH-uQpreaoS-TdHQ2_nZT6wNBMJt7c_Odc8kJgn2CjwjmPCRpTGcsyVjIMQlJiAnFcbIRTL4fNr97zreDHWuXGEf-pJPg7RYUNA4VsIKq7eqhb0tUgnS9AQSvzkjldNsg2RRIVdJaXWolP0Z1XzltO1AeqsKndQfm64Z0LR_BHiOJ7No6qL1CoUo7MKOzgZWGl91gq5SVhb3POg0ezk7v5xezxfX55fxkMVMx5m4mFeFMUlpmSZLkMqMRKyhWaRRnGVYZcMVzGUOhCCZY5VFScCp5lrM85UXOeTQNDkbfzrTPPVgnlm1vGr9S0CSNOCGMpZ5iI6VMa62BUnTG_8OsBcFiyFoMMYohUuGzFkSMWXvh4SjUbffjfHUzv_vFia4oPUv_YP9Z8A734JF-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2573811667</pqid></control><display><type>article</type><title>Recent development of feature extraction and classification multispectral/hyperspectral images: a systematic literature review</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Setiyoko, A ; Dharma, I G W S ; Haryanto, T</creator><creatorcontrib>Setiyoko, A ; Dharma, I G W S ; Haryanto, T</creatorcontrib><description>Multispectral data and hyperspectral data acquired from satellite sensor have the ability in detecting various objects on the earth ranging from low scale to high scale modeling. These data are increasingly being used to produce geospatial information for rapid analysis by running feature extraction or classification process. Applying the most suited model for this data mining is still challenging because there are issues regarding accuracy and computational cost. This research aim is to develop a better understanding regarding object feature extraction and classification applied for satellite image by systematically reviewing related recent research projects. A method used in this research is based on PRISMA statement. After deriving important points from trusted sources, pixel based and texture-based feature extraction techniques are promising technique to be analyzed more in recent development of feature extraction and classification.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/801/1/012045</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Classification ; Data acquisition ; Data mining ; Feature extraction ; Hyperspectral imaging ; Image acquisition ; Image classification ; Literature reviews ; Object recognition ; Physics ; Research projects ; Satellite imagery</subject><ispartof>Journal of physics. Conference series, 2017-01, Vol.801 (1), p.12045</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-ac186a22f9555ba9236d20c734990c9e8c8ba4edc1010cb35d82a89b6b78db883</citedby><cites>FETCH-LOGICAL-c408t-ac186a22f9555ba9236d20c734990c9e8c8ba4edc1010cb35d82a89b6b78db883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/801/1/012045/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Setiyoko, A</creatorcontrib><creatorcontrib>Dharma, I G W S</creatorcontrib><creatorcontrib>Haryanto, T</creatorcontrib><title>Recent development of feature extraction and classification multispectral/hyperspectral images: a systematic literature review</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Multispectral data and hyperspectral data acquired from satellite sensor have the ability in detecting various objects on the earth ranging from low scale to high scale modeling. These data are increasingly being used to produce geospatial information for rapid analysis by running feature extraction or classification process. Applying the most suited model for this data mining is still challenging because there are issues regarding accuracy and computational cost. This research aim is to develop a better understanding regarding object feature extraction and classification applied for satellite image by systematically reviewing related recent research projects. A method used in this research is based on PRISMA statement. After deriving important points from trusted sources, pixel based and texture-based feature extraction techniques are promising technique to be analyzed more in recent development of feature extraction and classification.</description><subject>Classification</subject><subject>Data acquisition</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>Hyperspectral imaging</subject><subject>Image acquisition</subject><subject>Image classification</subject><subject>Literature reviews</subject><subject>Object recognition</subject><subject>Physics</subject><subject>Research projects</subject><subject>Satellite imagery</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkEtLxDAUhYsoOI7-BQm4cjE2Sds0dSeDTwYUH-uQpreaoS-TdHQ2_nZT6wNBMJt7c_Odc8kJgn2CjwjmPCRpTGcsyVjIMQlJiAnFcbIRTL4fNr97zreDHWuXGEf-pJPg7RYUNA4VsIKq7eqhb0tUgnS9AQSvzkjldNsg2RRIVdJaXWolP0Z1XzltO1AeqsKndQfm64Z0LR_BHiOJ7No6qL1CoUo7MKOzgZWGl91gq5SVhb3POg0ezk7v5xezxfX55fxkMVMx5m4mFeFMUlpmSZLkMqMRKyhWaRRnGVYZcMVzGUOhCCZY5VFScCp5lrM85UXOeTQNDkbfzrTPPVgnlm1vGr9S0CSNOCGMpZ5iI6VMa62BUnTG_8OsBcFiyFoMMYohUuGzFkSMWXvh4SjUbffjfHUzv_vFia4oPUv_YP9Z8A734JF-</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Setiyoko, A</creator><creator>Dharma, I G W S</creator><creator>Haryanto, T</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20170101</creationdate><title>Recent development of feature extraction and classification multispectral/hyperspectral images: a systematic literature review</title><author>Setiyoko, A ; Dharma, I G W S ; Haryanto, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-ac186a22f9555ba9236d20c734990c9e8c8ba4edc1010cb35d82a89b6b78db883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Classification</topic><topic>Data acquisition</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>Hyperspectral imaging</topic><topic>Image acquisition</topic><topic>Image classification</topic><topic>Literature reviews</topic><topic>Object recognition</topic><topic>Physics</topic><topic>Research projects</topic><topic>Satellite imagery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Setiyoko, A</creatorcontrib><creatorcontrib>Dharma, I G W S</creatorcontrib><creatorcontrib>Haryanto, T</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Setiyoko, A</au><au>Dharma, I G W S</au><au>Haryanto, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent development of feature extraction and classification multispectral/hyperspectral images: a systematic literature review</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>801</volume><issue>1</issue><spage>12045</spage><pages>12045-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Multispectral data and hyperspectral data acquired from satellite sensor have the ability in detecting various objects on the earth ranging from low scale to high scale modeling. These data are increasingly being used to produce geospatial information for rapid analysis by running feature extraction or classification process. Applying the most suited model for this data mining is still challenging because there are issues regarding accuracy and computational cost. This research aim is to develop a better understanding regarding object feature extraction and classification applied for satellite image by systematically reviewing related recent research projects. A method used in this research is based on PRISMA statement. After deriving important points from trusted sources, pixel based and texture-based feature extraction techniques are promising technique to be analyzed more in recent development of feature extraction and classification.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/801/1/012045</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2017-01, Vol.801 (1), p.12045
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2573811667
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Classification
Data acquisition
Data mining
Feature extraction
Hyperspectral imaging
Image acquisition
Image classification
Literature reviews
Object recognition
Physics
Research projects
Satellite imagery
title Recent development of feature extraction and classification multispectral/hyperspectral images: a systematic literature review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A20%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20development%20of%20feature%20extraction%20and%20classification%20multispectral/hyperspectral%20images:%20a%20systematic%20literature%20review&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Setiyoko,%20A&rft.date=2017-01-01&rft.volume=801&rft.issue=1&rft.spage=12045&rft.pages=12045-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/801/1/012045&rft_dat=%3Cproquest_iop_j%3E2573811667%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2573811667&rft_id=info:pmid/&rfr_iscdi=true