Architecting with a flexible and modified polyethylene oxide coating for ambient-temperature solid-state Li metal batteries
Sodium superionic conductor (NASICON)-type conducting ceramic Li1+xAlxTi2−x(PO4)3 (LATP) has been regarded as one of the most promising candidates for high-safety and high-energy density solid-state Li metal batteries (SSLMBs) because of its high ionic conductivity and good chemical stability. Howev...
Gespeichert in:
Veröffentlicht in: | Surface & coatings technology 2021-09, Vol.421, p.127389, Article 127389 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 127389 |
container_title | Surface & coatings technology |
container_volume | 421 |
creator | Cai, Zehua Xiao, Rengui Jiang, Bo |
description | Sodium superionic conductor (NASICON)-type conducting ceramic Li1+xAlxTi2−x(PO4)3 (LATP) has been regarded as one of the most promising candidates for high-safety and high-energy density solid-state Li metal batteries (SSLMBs) because of its high ionic conductivity and good chemical stability. However, the large interfacial impedance and instability between the solid electrode and LATP electrolyte severely hinder its practical application in solid-state batteries. To overcome this technical challenge, we demonstrate a polymer–ceramic–polymer composite electrolytes (PCPCEs) prepared through drop casting, which ameliorates the interfacial stability between the solid electrolyte and the electrode. PCPCEs with an ideal ambient-temperature ionic conductivity can drastically reduce the interfacial resistance between the LATP and solid electrodes and effectively avoid a direct reaction and contact between them. As a result, the interfacial impedance decreases from 30,000 to 280 Ω for the Li–LATP interfaces and from 40,000 to 800 Ω for the LATP–LiFePO4 (LFP) interfaces. Meanwhile, the polarization voltage of the Li||PCPCEs||Li symmetric cell reduces from 1.5 V to 100 mV. The solid-state Li metal batteries assembled with a Li metal anode, LFP cathode, and PCPCEs exhibit a desired initial discharge capacity of 152.5 mAh g−1 and a good cycling performance at 0.1 C for 25 °C. This study provides a prospective insight to improve the poor interface between the solid electrode and inorganic conducting ceramic.
[Display omitted]
•The interfacial stability between LATP and solid electrode is improved.•The Li||LiFePO4 solid state battery with PCPCEs demonstrates a high discharge capacity of 152.5 mAh g-1.•The compatibility between inorganic ceramic and solid electrode for solid state Lithium metal batteries was researched. |
doi_str_mv | 10.1016/j.surfcoat.2021.127389 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2573513962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897221005636</els_id><sourcerecordid>2573513962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-25280aee37d6378ded600238665f8a1fbd11518334d92b62158bef966e9f42983</originalsourceid><addsrcrecordid>eNqFkMtKAzEYhYMoWKuvIAHXM-bSySQ7S_EGBTe6DpnJH5syM6lJqi2-vFOqa1dncy6cD6FrSkpKqLhdl2kbXRtMLhlhtKSs5lKdoAmVtSo4n9WnaEJYVRdS1ewcXaS0JoTQWs0m6Hse25XP0GY_vOMvn1fYYNfBzjcdYDNY3AfrnQeLN6HbQ17tOxgAh523gA-jh5wLEZu-8TDkIkO_gWjyNgJOofO2SNlkwEuPe8imw43JGaKHdInOnOkSXP3qFL093L8unorly-PzYr4sWj4juWAVk8QA8NoKXksLVhDCuBSictJQ11hKKyrHo1axRjBayQacEgKUmzEl-RTdHHs3MXxsIWW9Dts4jJN6pMIrypVgo0scXW0MKUVwehN9b-JeU6IPoPVa_4HWB9D6CHoM3h2DMH749BB1akcSLVgfR67aBv9fxQ-SHowk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2573513962</pqid></control><display><type>article</type><title>Architecting with a flexible and modified polyethylene oxide coating for ambient-temperature solid-state Li metal batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Cai, Zehua ; Xiao, Rengui ; Jiang, Bo</creator><creatorcontrib>Cai, Zehua ; Xiao, Rengui ; Jiang, Bo</creatorcontrib><description>Sodium superionic conductor (NASICON)-type conducting ceramic Li1+xAlxTi2−x(PO4)3 (LATP) has been regarded as one of the most promising candidates for high-safety and high-energy density solid-state Li metal batteries (SSLMBs) because of its high ionic conductivity and good chemical stability. However, the large interfacial impedance and instability between the solid electrode and LATP electrolyte severely hinder its practical application in solid-state batteries. To overcome this technical challenge, we demonstrate a polymer–ceramic–polymer composite electrolytes (PCPCEs) prepared through drop casting, which ameliorates the interfacial stability between the solid electrolyte and the electrode. PCPCEs with an ideal ambient-temperature ionic conductivity can drastically reduce the interfacial resistance between the LATP and solid electrodes and effectively avoid a direct reaction and contact between them. As a result, the interfacial impedance decreases from 30,000 to 280 Ω for the Li–LATP interfaces and from 40,000 to 800 Ω for the LATP–LiFePO4 (LFP) interfaces. Meanwhile, the polarization voltage of the Li||PCPCEs||Li symmetric cell reduces from 1.5 V to 100 mV. The solid-state Li metal batteries assembled with a Li metal anode, LFP cathode, and PCPCEs exhibit a desired initial discharge capacity of 152.5 mAh g−1 and a good cycling performance at 0.1 C for 25 °C. This study provides a prospective insight to improve the poor interface between the solid electrode and inorganic conducting ceramic.
[Display omitted]
•The interfacial stability between LATP and solid electrode is improved.•The Li||LiFePO4 solid state battery with PCPCEs demonstrates a high discharge capacity of 152.5 mAh g-1.•The compatibility between inorganic ceramic and solid electrode for solid state Lithium metal batteries was researched.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2021.127389</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Ambient temperature ; Ceramics ; Conduction ; Conductors ; Electrode polarization ; Electrodes ; Electrolytes ; Flux density ; Impedance ; Interface stability ; Interfacial stability ; Ion currents ; Li aluminum titanium phosphate (LATP) ; Lithium ; Oxide coatings ; Polyethylene oxide ; Polyethylene oxide (PEO) ; Polymer matrix composites ; Polymers ; Polymer–ceramic–polymer composite electrolytes (PCPCEs) ; Solid electrodes ; Solid electrolytes ; Solid state ; Solid-state Li metal batteries</subject><ispartof>Surface & coatings technology, 2021-09, Vol.421, p.127389, Article 127389</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-25280aee37d6378ded600238665f8a1fbd11518334d92b62158bef966e9f42983</citedby><cites>FETCH-LOGICAL-c340t-25280aee37d6378ded600238665f8a1fbd11518334d92b62158bef966e9f42983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0257897221005636$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Cai, Zehua</creatorcontrib><creatorcontrib>Xiao, Rengui</creatorcontrib><creatorcontrib>Jiang, Bo</creatorcontrib><title>Architecting with a flexible and modified polyethylene oxide coating for ambient-temperature solid-state Li metal batteries</title><title>Surface & coatings technology</title><description>Sodium superionic conductor (NASICON)-type conducting ceramic Li1+xAlxTi2−x(PO4)3 (LATP) has been regarded as one of the most promising candidates for high-safety and high-energy density solid-state Li metal batteries (SSLMBs) because of its high ionic conductivity and good chemical stability. However, the large interfacial impedance and instability between the solid electrode and LATP electrolyte severely hinder its practical application in solid-state batteries. To overcome this technical challenge, we demonstrate a polymer–ceramic–polymer composite electrolytes (PCPCEs) prepared through drop casting, which ameliorates the interfacial stability between the solid electrolyte and the electrode. PCPCEs with an ideal ambient-temperature ionic conductivity can drastically reduce the interfacial resistance between the LATP and solid electrodes and effectively avoid a direct reaction and contact between them. As a result, the interfacial impedance decreases from 30,000 to 280 Ω for the Li–LATP interfaces and from 40,000 to 800 Ω for the LATP–LiFePO4 (LFP) interfaces. Meanwhile, the polarization voltage of the Li||PCPCEs||Li symmetric cell reduces from 1.5 V to 100 mV. The solid-state Li metal batteries assembled with a Li metal anode, LFP cathode, and PCPCEs exhibit a desired initial discharge capacity of 152.5 mAh g−1 and a good cycling performance at 0.1 C for 25 °C. This study provides a prospective insight to improve the poor interface between the solid electrode and inorganic conducting ceramic.
[Display omitted]
•The interfacial stability between LATP and solid electrode is improved.•The Li||LiFePO4 solid state battery with PCPCEs demonstrates a high discharge capacity of 152.5 mAh g-1.•The compatibility between inorganic ceramic and solid electrode for solid state Lithium metal batteries was researched.</description><subject>Ambient temperature</subject><subject>Ceramics</subject><subject>Conduction</subject><subject>Conductors</subject><subject>Electrode polarization</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Flux density</subject><subject>Impedance</subject><subject>Interface stability</subject><subject>Interfacial stability</subject><subject>Ion currents</subject><subject>Li aluminum titanium phosphate (LATP)</subject><subject>Lithium</subject><subject>Oxide coatings</subject><subject>Polyethylene oxide</subject><subject>Polyethylene oxide (PEO)</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Polymer–ceramic–polymer composite electrolytes (PCPCEs)</subject><subject>Solid electrodes</subject><subject>Solid electrolytes</subject><subject>Solid state</subject><subject>Solid-state Li metal batteries</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEYhYMoWKuvIAHXM-bSySQ7S_EGBTe6DpnJH5syM6lJqi2-vFOqa1dncy6cD6FrSkpKqLhdl2kbXRtMLhlhtKSs5lKdoAmVtSo4n9WnaEJYVRdS1ewcXaS0JoTQWs0m6Hse25XP0GY_vOMvn1fYYNfBzjcdYDNY3AfrnQeLN6HbQ17tOxgAh523gA-jh5wLEZu-8TDkIkO_gWjyNgJOofO2SNlkwEuPe8imw43JGaKHdInOnOkSXP3qFL093L8unorly-PzYr4sWj4juWAVk8QA8NoKXksLVhDCuBSictJQ11hKKyrHo1axRjBayQacEgKUmzEl-RTdHHs3MXxsIWW9Dts4jJN6pMIrypVgo0scXW0MKUVwehN9b-JeU6IPoPVa_4HWB9D6CHoM3h2DMH749BB1akcSLVgfR67aBv9fxQ-SHowk</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Cai, Zehua</creator><creator>Xiao, Rengui</creator><creator>Jiang, Bo</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210915</creationdate><title>Architecting with a flexible and modified polyethylene oxide coating for ambient-temperature solid-state Li metal batteries</title><author>Cai, Zehua ; Xiao, Rengui ; Jiang, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-25280aee37d6378ded600238665f8a1fbd11518334d92b62158bef966e9f42983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ambient temperature</topic><topic>Ceramics</topic><topic>Conduction</topic><topic>Conductors</topic><topic>Electrode polarization</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Flux density</topic><topic>Impedance</topic><topic>Interface stability</topic><topic>Interfacial stability</topic><topic>Ion currents</topic><topic>Li aluminum titanium phosphate (LATP)</topic><topic>Lithium</topic><topic>Oxide coatings</topic><topic>Polyethylene oxide</topic><topic>Polyethylene oxide (PEO)</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Polymer–ceramic–polymer composite electrolytes (PCPCEs)</topic><topic>Solid electrodes</topic><topic>Solid electrolytes</topic><topic>Solid state</topic><topic>Solid-state Li metal batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Zehua</creatorcontrib><creatorcontrib>Xiao, Rengui</creatorcontrib><creatorcontrib>Jiang, Bo</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface & coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Zehua</au><au>Xiao, Rengui</au><au>Jiang, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Architecting with a flexible and modified polyethylene oxide coating for ambient-temperature solid-state Li metal batteries</atitle><jtitle>Surface & coatings technology</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>421</volume><spage>127389</spage><pages>127389-</pages><artnum>127389</artnum><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>Sodium superionic conductor (NASICON)-type conducting ceramic Li1+xAlxTi2−x(PO4)3 (LATP) has been regarded as one of the most promising candidates for high-safety and high-energy density solid-state Li metal batteries (SSLMBs) because of its high ionic conductivity and good chemical stability. However, the large interfacial impedance and instability between the solid electrode and LATP electrolyte severely hinder its practical application in solid-state batteries. To overcome this technical challenge, we demonstrate a polymer–ceramic–polymer composite electrolytes (PCPCEs) prepared through drop casting, which ameliorates the interfacial stability between the solid electrolyte and the electrode. PCPCEs with an ideal ambient-temperature ionic conductivity can drastically reduce the interfacial resistance between the LATP and solid electrodes and effectively avoid a direct reaction and contact between them. As a result, the interfacial impedance decreases from 30,000 to 280 Ω for the Li–LATP interfaces and from 40,000 to 800 Ω for the LATP–LiFePO4 (LFP) interfaces. Meanwhile, the polarization voltage of the Li||PCPCEs||Li symmetric cell reduces from 1.5 V to 100 mV. The solid-state Li metal batteries assembled with a Li metal anode, LFP cathode, and PCPCEs exhibit a desired initial discharge capacity of 152.5 mAh g−1 and a good cycling performance at 0.1 C for 25 °C. This study provides a prospective insight to improve the poor interface between the solid electrode and inorganic conducting ceramic.
[Display omitted]
•The interfacial stability between LATP and solid electrode is improved.•The Li||LiFePO4 solid state battery with PCPCEs demonstrates a high discharge capacity of 152.5 mAh g-1.•The compatibility between inorganic ceramic and solid electrode for solid state Lithium metal batteries was researched.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2021.127389</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0257-8972 |
ispartof | Surface & coatings technology, 2021-09, Vol.421, p.127389, Article 127389 |
issn | 0257-8972 1879-3347 |
language | eng |
recordid | cdi_proquest_journals_2573513962 |
source | Elsevier ScienceDirect Journals |
subjects | Ambient temperature Ceramics Conduction Conductors Electrode polarization Electrodes Electrolytes Flux density Impedance Interface stability Interfacial stability Ion currents Li aluminum titanium phosphate (LATP) Lithium Oxide coatings Polyethylene oxide Polyethylene oxide (PEO) Polymer matrix composites Polymers Polymer–ceramic–polymer composite electrolytes (PCPCEs) Solid electrodes Solid electrolytes Solid state Solid-state Li metal batteries |
title | Architecting with a flexible and modified polyethylene oxide coating for ambient-temperature solid-state Li metal batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T06%3A08%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Architecting%20with%20a%20flexible%20and%20modified%20polyethylene%20oxide%20coating%20for%20ambient-temperature%20solid-state%20Li%20metal%20batteries&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Cai,%20Zehua&rft.date=2021-09-15&rft.volume=421&rft.spage=127389&rft.pages=127389-&rft.artnum=127389&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/10.1016/j.surfcoat.2021.127389&rft_dat=%3Cproquest_cross%3E2573513962%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2573513962&rft_id=info:pmid/&rft_els_id=S0257897221005636&rfr_iscdi=true |