Compositional Data Analysis – Coherent Forecasting Mortality Model with Cohort Effect

In this paper, an extension of the Coherent forecasts of mortality with compositional data analysis (CoDa) model of Bergeron-Boucher et al. (2017) to cohort effect is proposed applied to data from six African countries. The process of fitting this model starts by adapting the Renshaw and Haberman (2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Statistical and Econometric Methods 2020-01, Vol.9 (1)
Hauptverfasser: BATIONO, Amos, ODONGO, Leo, DERRA, Karim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of Statistical and Econometric Methods
container_volume 9
creator BATIONO, Amos
ODONGO, Leo
DERRA, Karim
description In this paper, an extension of the Coherent forecasts of mortality with compositional data analysis (CoDa) model of Bergeron-Boucher et al. (2017) to cohort effect is proposed applied to data from six African countries. The process of fitting this model starts by adapting the Renshaw and Haberman (2006) to compositional data analysis (CODA) as suggested by Bergeron-Boucher et al. (2017). The proposed CoDa-cohort model generally fits the data better than the original cohort model of Renshaw and Haberman (2006). To get the full CoDa-cohort-coherent model the multiple population factor is included in CoDa-cohort model. Then a comparison between CoDa -coherent and CoDa-cohort-coherent models revealed that they have similar accuracy for the selected countries in West Africa but not for countries in East Africa based on Aitchinson distance (AD). But for merged populations like male and female, the new model, CoDa-cohort-coherent, has generally better fits for Kenya mortality data.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2573397603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2573397603</sourcerecordid><originalsourceid>FETCH-proquest_journals_25733976033</originalsourceid><addsrcrecordid>eNqNjcEKgkAURYcoSMp_GGgtTI45ugxT2rQLWspgY46YY_OehLv-oT_sSzKI1q3u4XLgTIjj-8HaY1yE0x9HwZy4ADVjzI-DSMTCIafEXDsDGrVpZUN3EiXdjjSABvp6PGliKmVVizQzVhUSULcXejAWZaNxGOmsGnrXWH3M8aZpWaoCl2RWygaU-90FWWXpMdl7nTW3XgHmtentGILc3wjOYxEyzv-z3mndREc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2573397603</pqid></control><display><type>article</type><title>Compositional Data Analysis – Coherent Forecasting Mortality Model with Cohort Effect</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>BATIONO, Amos ; ODONGO, Leo ; DERRA, Karim</creator><creatorcontrib>BATIONO, Amos ; ODONGO, Leo ; DERRA, Karim</creatorcontrib><description>In this paper, an extension of the Coherent forecasts of mortality with compositional data analysis (CoDa) model of Bergeron-Boucher et al. (2017) to cohort effect is proposed applied to data from six African countries. The process of fitting this model starts by adapting the Renshaw and Haberman (2006) to compositional data analysis (CODA) as suggested by Bergeron-Boucher et al. (2017). The proposed CoDa-cohort model generally fits the data better than the original cohort model of Renshaw and Haberman (2006). To get the full CoDa-cohort-coherent model the multiple population factor is included in CoDa-cohort model. Then a comparison between CoDa -coherent and CoDa-cohort-coherent models revealed that they have similar accuracy for the selected countries in West Africa but not for countries in East Africa based on Aitchinson distance (AD). But for merged populations like male and female, the new model, CoDa-cohort-coherent, has generally better fits for Kenya mortality data.</description><identifier>ISSN: 2241-0384</identifier><identifier>EISSN: 2241-0376</identifier><language>eng</language><publisher>Christchurch: Scientific Press International Limited</publisher><subject>Data analysis ; Mortality</subject><ispartof>Journal of Statistical and Econometric Methods, 2020-01, Vol.9 (1)</ispartof><rights>2020. This work is published under http://creativecommons.org/licenses/by/2.5/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>BATIONO, Amos</creatorcontrib><creatorcontrib>ODONGO, Leo</creatorcontrib><creatorcontrib>DERRA, Karim</creatorcontrib><title>Compositional Data Analysis – Coherent Forecasting Mortality Model with Cohort Effect</title><title>Journal of Statistical and Econometric Methods</title><description>In this paper, an extension of the Coherent forecasts of mortality with compositional data analysis (CoDa) model of Bergeron-Boucher et al. (2017) to cohort effect is proposed applied to data from six African countries. The process of fitting this model starts by adapting the Renshaw and Haberman (2006) to compositional data analysis (CODA) as suggested by Bergeron-Boucher et al. (2017). The proposed CoDa-cohort model generally fits the data better than the original cohort model of Renshaw and Haberman (2006). To get the full CoDa-cohort-coherent model the multiple population factor is included in CoDa-cohort model. Then a comparison between CoDa -coherent and CoDa-cohort-coherent models revealed that they have similar accuracy for the selected countries in West Africa but not for countries in East Africa based on Aitchinson distance (AD). But for merged populations like male and female, the new model, CoDa-cohort-coherent, has generally better fits for Kenya mortality data.</description><subject>Data analysis</subject><subject>Mortality</subject><issn>2241-0384</issn><issn>2241-0376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjcEKgkAURYcoSMp_GGgtTI45ugxT2rQLWspgY46YY_OehLv-oT_sSzKI1q3u4XLgTIjj-8HaY1yE0x9HwZy4ADVjzI-DSMTCIafEXDsDGrVpZUN3EiXdjjSABvp6PGliKmVVizQzVhUSULcXejAWZaNxGOmsGnrXWH3M8aZpWaoCl2RWygaU-90FWWXpMdl7nTW3XgHmtentGILc3wjOYxEyzv-z3mndREc</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>BATIONO, Amos</creator><creator>ODONGO, Leo</creator><creator>DERRA, Karim</creator><general>Scientific Press International Limited</general><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20200101</creationdate><title>Compositional Data Analysis – Coherent Forecasting Mortality Model with Cohort Effect</title><author>BATIONO, Amos ; ODONGO, Leo ; DERRA, Karim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25733976033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Data analysis</topic><topic>Mortality</topic><toplevel>online_resources</toplevel><creatorcontrib>BATIONO, Amos</creatorcontrib><creatorcontrib>ODONGO, Leo</creatorcontrib><creatorcontrib>DERRA, Karim</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of Statistical and Econometric Methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BATIONO, Amos</au><au>ODONGO, Leo</au><au>DERRA, Karim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compositional Data Analysis – Coherent Forecasting Mortality Model with Cohort Effect</atitle><jtitle>Journal of Statistical and Econometric Methods</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>9</volume><issue>1</issue><issn>2241-0384</issn><eissn>2241-0376</eissn><abstract>In this paper, an extension of the Coherent forecasts of mortality with compositional data analysis (CoDa) model of Bergeron-Boucher et al. (2017) to cohort effect is proposed applied to data from six African countries. The process of fitting this model starts by adapting the Renshaw and Haberman (2006) to compositional data analysis (CODA) as suggested by Bergeron-Boucher et al. (2017). The proposed CoDa-cohort model generally fits the data better than the original cohort model of Renshaw and Haberman (2006). To get the full CoDa-cohort-coherent model the multiple population factor is included in CoDa-cohort model. Then a comparison between CoDa -coherent and CoDa-cohort-coherent models revealed that they have similar accuracy for the selected countries in West Africa but not for countries in East Africa based on Aitchinson distance (AD). But for merged populations like male and female, the new model, CoDa-cohort-coherent, has generally better fits for Kenya mortality data.</abstract><cop>Christchurch</cop><pub>Scientific Press International Limited</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2241-0384
ispartof Journal of Statistical and Econometric Methods, 2020-01, Vol.9 (1)
issn 2241-0384
2241-0376
language eng
recordid cdi_proquest_journals_2573397603
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Data analysis
Mortality
title Compositional Data Analysis – Coherent Forecasting Mortality Model with Cohort Effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A06%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compositional%20Data%20Analysis%20%E2%80%93%20Coherent%20Forecasting%20Mortality%20Model%20with%20Cohort%20Effect&rft.jtitle=Journal%20of%20Statistical%20and%20Econometric%20Methods&rft.au=BATIONO,%20Amos&rft.date=2020-01-01&rft.volume=9&rft.issue=1&rft.issn=2241-0384&rft.eissn=2241-0376&rft_id=info:doi/&rft_dat=%3Cproquest%3E2573397603%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2573397603&rft_id=info:pmid/&rfr_iscdi=true