Dryline characteristics in North America’s historical and future climates

Drylines are atmospheric boundaries separating dry from moist air that can initiate convection. Potential changes in the location, frequency, and characteristics of drylines in future climates are unknown. This study applies a multi-parametric algorithm to objectively identify and characterize the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate dynamics 2021-10, Vol.57 (7-8), p.2171-2188
Hauptverfasser: Scaff, Lucia, Prein, Andreas F., Li, Yanping, Clark, Adam J., Krogh, Sebastian A., Taylor, Neil, Liu, Changhai, Rasmussen, Roy M., Ikeda, Kyoko, Li, Zhenhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2188
container_issue 7-8
container_start_page 2171
container_title Climate dynamics
container_volume 57
creator Scaff, Lucia
Prein, Andreas F.
Li, Yanping
Clark, Adam J.
Krogh, Sebastian A.
Taylor, Neil
Liu, Changhai
Rasmussen, Roy M.
Ikeda, Kyoko
Li, Zhenhua
description Drylines are atmospheric boundaries separating dry from moist air that can initiate convection. Potential changes in the location, frequency, and characteristics of drylines in future climates are unknown. This study applies a multi-parametric algorithm to objectively identify and characterize the dryline in North America using convection-permitting regional climate model simulations with 4-km horizontal grid spacing for 13-years under a historical and a pseudo-global warming climate projection by the end of the century. The dryline identification is successfully achieved with a set of standardized algorithm parameters across the lee side of the Rocky Mountains from the Canadian Rockies to the Sierra Madres in Mexico. The dryline is present 27% of the days at 00 UTC between April and September in the current climate, with a mean humidity gradient magnitude of 0.16 g −1 kg −1 km −1 . The seasonal cycle of drylines peak around April and May in the southern Plains, and in June and July in the northern Plains. In the future climate, the magnitude and frequency of drylines increase 5% and 13%, correspondingly, with a stronger intensification southward. Future drylines strengthen during their peak intensity in the afternoon in the Southern U.S. and Northeast Mexico. Drylines also show increasing intensities in the morning with future magnitudes that are comparable to peak intensities found in the afternoon in the historical climate. Furthermore, an extension of the seasonality of intense drylines could produce end-of-summer drylines that are as strong as mid-summer drylines in the current climate. This might affect the seasonality and the diurnal cycle of convective activity in future climates, challenging weather forecasting and agricultural planning.
doi_str_mv 10.1007/s00382-021-05800-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2573151444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A675852709</galeid><sourcerecordid>A675852709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-880563fd125407af2474a48bb8e5294817f042e908ebffd471bc28fb63be9ca33</originalsourceid><addsrcrecordid>eNp9kd9KHDEUxkNR6Hb1BXo1UCj0YvTk3yZzuVhbRVHwz3XIZJOdyOzEJhno3vU1fL0-idEp1L2RXIR8-X3ncM6H0GcMRxhAHCcAKkkNBNfAJUCNP6AZZrRIsmF7aAYNhVpwwT-iTyk9AGC2EGSGLr7Hbe8HW5lOR22yjT5lb1Llh-oqxNxVy03RjP775ylVXfkML6--0sOqcmMeY7H2fqOzTQdo3-k-2cN_9xzd_zi9OzmrL69_np8sL2tTeuZaSuAL6laYcAZCO8IE00y2rbScNExi4YAR24C0rXMrJnBriHTtgra2MZrSOfoy1X2M4ddoU1YPYYxDaakIFxRzzBgr1NFErXVvlR9cyGXAclZ2400YrPNFXy4El5yIsp85-rZjKEy2v_Najymp89ubXfbrG7azus9dCv2YfRjSLkgm0MSQUrROPcayrbhVGNRLdGqKTpXo1Gt0ChcTnUypwMPaxv8DvuN6Buqkmns</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2573151444</pqid></control><display><type>article</type><title>Dryline characteristics in North America’s historical and future climates</title><source>SpringerLink Journals - AutoHoldings</source><creator>Scaff, Lucia ; Prein, Andreas F. ; Li, Yanping ; Clark, Adam J. ; Krogh, Sebastian A. ; Taylor, Neil ; Liu, Changhai ; Rasmussen, Roy M. ; Ikeda, Kyoko ; Li, Zhenhua</creator><creatorcontrib>Scaff, Lucia ; Prein, Andreas F. ; Li, Yanping ; Clark, Adam J. ; Krogh, Sebastian A. ; Taylor, Neil ; Liu, Changhai ; Rasmussen, Roy M. ; Ikeda, Kyoko ; Li, Zhenhua</creatorcontrib><description>Drylines are atmospheric boundaries separating dry from moist air that can initiate convection. Potential changes in the location, frequency, and characteristics of drylines in future climates are unknown. This study applies a multi-parametric algorithm to objectively identify and characterize the dryline in North America using convection-permitting regional climate model simulations with 4-km horizontal grid spacing for 13-years under a historical and a pseudo-global warming climate projection by the end of the century. The dryline identification is successfully achieved with a set of standardized algorithm parameters across the lee side of the Rocky Mountains from the Canadian Rockies to the Sierra Madres in Mexico. The dryline is present 27% of the days at 00 UTC between April and September in the current climate, with a mean humidity gradient magnitude of 0.16 g −1 kg −1 km −1 . The seasonal cycle of drylines peak around April and May in the southern Plains, and in June and July in the northern Plains. In the future climate, the magnitude and frequency of drylines increase 5% and 13%, correspondingly, with a stronger intensification southward. Future drylines strengthen during their peak intensity in the afternoon in the Southern U.S. and Northeast Mexico. Drylines also show increasing intensities in the morning with future magnitudes that are comparable to peak intensities found in the afternoon in the historical climate. Furthermore, an extension of the seasonality of intense drylines could produce end-of-summer drylines that are as strong as mid-summer drylines in the current climate. This might affect the seasonality and the diurnal cycle of convective activity in future climates, challenging weather forecasting and agricultural planning.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-021-05800-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Climate ; Climate change ; Climate models ; Climatology ; Convection ; Convective activity ; Diurnal cycle ; Diurnal variations ; Drylines ; Drylines (Meteorology) ; Earth and Environmental Science ; Earth Sciences ; Environmental aspects ; Future climates ; Geophysics/Geodesy ; Global climate ; Global warming ; Mountains ; Oceanography ; Parameter identification ; Regional climate models ; Regional climates ; Seasonal variation ; Seasonal variations ; Seasonality ; Summer ; Weather forecasting</subject><ispartof>Climate dynamics, 2021-10, Vol.57 (7-8), p.2171-2188</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. corrected publication 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. corrected publication 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-880563fd125407af2474a48bb8e5294817f042e908ebffd471bc28fb63be9ca33</citedby><cites>FETCH-LOGICAL-c467t-880563fd125407af2474a48bb8e5294817f042e908ebffd471bc28fb63be9ca33</cites><orcidid>0000-0002-6481-2652</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-021-05800-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-021-05800-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Scaff, Lucia</creatorcontrib><creatorcontrib>Prein, Andreas F.</creatorcontrib><creatorcontrib>Li, Yanping</creatorcontrib><creatorcontrib>Clark, Adam J.</creatorcontrib><creatorcontrib>Krogh, Sebastian A.</creatorcontrib><creatorcontrib>Taylor, Neil</creatorcontrib><creatorcontrib>Liu, Changhai</creatorcontrib><creatorcontrib>Rasmussen, Roy M.</creatorcontrib><creatorcontrib>Ikeda, Kyoko</creatorcontrib><creatorcontrib>Li, Zhenhua</creatorcontrib><title>Dryline characteristics in North America’s historical and future climates</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>Drylines are atmospheric boundaries separating dry from moist air that can initiate convection. Potential changes in the location, frequency, and characteristics of drylines in future climates are unknown. This study applies a multi-parametric algorithm to objectively identify and characterize the dryline in North America using convection-permitting regional climate model simulations with 4-km horizontal grid spacing for 13-years under a historical and a pseudo-global warming climate projection by the end of the century. The dryline identification is successfully achieved with a set of standardized algorithm parameters across the lee side of the Rocky Mountains from the Canadian Rockies to the Sierra Madres in Mexico. The dryline is present 27% of the days at 00 UTC between April and September in the current climate, with a mean humidity gradient magnitude of 0.16 g −1 kg −1 km −1 . The seasonal cycle of drylines peak around April and May in the southern Plains, and in June and July in the northern Plains. In the future climate, the magnitude and frequency of drylines increase 5% and 13%, correspondingly, with a stronger intensification southward. Future drylines strengthen during their peak intensity in the afternoon in the Southern U.S. and Northeast Mexico. Drylines also show increasing intensities in the morning with future magnitudes that are comparable to peak intensities found in the afternoon in the historical climate. Furthermore, an extension of the seasonality of intense drylines could produce end-of-summer drylines that are as strong as mid-summer drylines in the current climate. This might affect the seasonality and the diurnal cycle of convective activity in future climates, challenging weather forecasting and agricultural planning.</description><subject>Algorithms</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climatology</subject><subject>Convection</subject><subject>Convective activity</subject><subject>Diurnal cycle</subject><subject>Diurnal variations</subject><subject>Drylines</subject><subject>Drylines (Meteorology)</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental aspects</subject><subject>Future climates</subject><subject>Geophysics/Geodesy</subject><subject>Global climate</subject><subject>Global warming</subject><subject>Mountains</subject><subject>Oceanography</subject><subject>Parameter identification</subject><subject>Regional climate models</subject><subject>Regional climates</subject><subject>Seasonal variation</subject><subject>Seasonal variations</subject><subject>Seasonality</subject><subject>Summer</subject><subject>Weather forecasting</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kd9KHDEUxkNR6Hb1BXo1UCj0YvTk3yZzuVhbRVHwz3XIZJOdyOzEJhno3vU1fL0-idEp1L2RXIR8-X3ncM6H0GcMRxhAHCcAKkkNBNfAJUCNP6AZZrRIsmF7aAYNhVpwwT-iTyk9AGC2EGSGLr7Hbe8HW5lOR22yjT5lb1Llh-oqxNxVy03RjP775ylVXfkML6--0sOqcmMeY7H2fqOzTQdo3-k-2cN_9xzd_zi9OzmrL69_np8sL2tTeuZaSuAL6laYcAZCO8IE00y2rbScNExi4YAR24C0rXMrJnBriHTtgra2MZrSOfoy1X2M4ddoU1YPYYxDaakIFxRzzBgr1NFErXVvlR9cyGXAclZ2400YrPNFXy4El5yIsp85-rZjKEy2v_Najymp89ubXfbrG7azus9dCv2YfRjSLkgm0MSQUrROPcayrbhVGNRLdGqKTpXo1Gt0ChcTnUypwMPaxv8DvuN6Buqkmns</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Scaff, Lucia</creator><creator>Prein, Andreas F.</creator><creator>Li, Yanping</creator><creator>Clark, Adam J.</creator><creator>Krogh, Sebastian A.</creator><creator>Taylor, Neil</creator><creator>Liu, Changhai</creator><creator>Rasmussen, Roy M.</creator><creator>Ikeda, Kyoko</creator><creator>Li, Zhenhua</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6481-2652</orcidid></search><sort><creationdate>20211001</creationdate><title>Dryline characteristics in North America’s historical and future climates</title><author>Scaff, Lucia ; Prein, Andreas F. ; Li, Yanping ; Clark, Adam J. ; Krogh, Sebastian A. ; Taylor, Neil ; Liu, Changhai ; Rasmussen, Roy M. ; Ikeda, Kyoko ; Li, Zhenhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-880563fd125407af2474a48bb8e5294817f042e908ebffd471bc28fb63be9ca33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climatology</topic><topic>Convection</topic><topic>Convective activity</topic><topic>Diurnal cycle</topic><topic>Diurnal variations</topic><topic>Drylines</topic><topic>Drylines (Meteorology)</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental aspects</topic><topic>Future climates</topic><topic>Geophysics/Geodesy</topic><topic>Global climate</topic><topic>Global warming</topic><topic>Mountains</topic><topic>Oceanography</topic><topic>Parameter identification</topic><topic>Regional climate models</topic><topic>Regional climates</topic><topic>Seasonal variation</topic><topic>Seasonal variations</topic><topic>Seasonality</topic><topic>Summer</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scaff, Lucia</creatorcontrib><creatorcontrib>Prein, Andreas F.</creatorcontrib><creatorcontrib>Li, Yanping</creatorcontrib><creatorcontrib>Clark, Adam J.</creatorcontrib><creatorcontrib>Krogh, Sebastian A.</creatorcontrib><creatorcontrib>Taylor, Neil</creatorcontrib><creatorcontrib>Liu, Changhai</creatorcontrib><creatorcontrib>Rasmussen, Roy M.</creatorcontrib><creatorcontrib>Ikeda, Kyoko</creatorcontrib><creatorcontrib>Li, Zhenhua</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scaff, Lucia</au><au>Prein, Andreas F.</au><au>Li, Yanping</au><au>Clark, Adam J.</au><au>Krogh, Sebastian A.</au><au>Taylor, Neil</au><au>Liu, Changhai</au><au>Rasmussen, Roy M.</au><au>Ikeda, Kyoko</au><au>Li, Zhenhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dryline characteristics in North America’s historical and future climates</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>57</volume><issue>7-8</issue><spage>2171</spage><epage>2188</epage><pages>2171-2188</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>Drylines are atmospheric boundaries separating dry from moist air that can initiate convection. Potential changes in the location, frequency, and characteristics of drylines in future climates are unknown. This study applies a multi-parametric algorithm to objectively identify and characterize the dryline in North America using convection-permitting regional climate model simulations with 4-km horizontal grid spacing for 13-years under a historical and a pseudo-global warming climate projection by the end of the century. The dryline identification is successfully achieved with a set of standardized algorithm parameters across the lee side of the Rocky Mountains from the Canadian Rockies to the Sierra Madres in Mexico. The dryline is present 27% of the days at 00 UTC between April and September in the current climate, with a mean humidity gradient magnitude of 0.16 g −1 kg −1 km −1 . The seasonal cycle of drylines peak around April and May in the southern Plains, and in June and July in the northern Plains. In the future climate, the magnitude and frequency of drylines increase 5% and 13%, correspondingly, with a stronger intensification southward. Future drylines strengthen during their peak intensity in the afternoon in the Southern U.S. and Northeast Mexico. Drylines also show increasing intensities in the morning with future magnitudes that are comparable to peak intensities found in the afternoon in the historical climate. Furthermore, an extension of the seasonality of intense drylines could produce end-of-summer drylines that are as strong as mid-summer drylines in the current climate. This might affect the seasonality and the diurnal cycle of convective activity in future climates, challenging weather forecasting and agricultural planning.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-021-05800-1</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6481-2652</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0930-7575
ispartof Climate dynamics, 2021-10, Vol.57 (7-8), p.2171-2188
issn 0930-7575
1432-0894
language eng
recordid cdi_proquest_journals_2573151444
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Climate
Climate change
Climate models
Climatology
Convection
Convective activity
Diurnal cycle
Diurnal variations
Drylines
Drylines (Meteorology)
Earth and Environmental Science
Earth Sciences
Environmental aspects
Future climates
Geophysics/Geodesy
Global climate
Global warming
Mountains
Oceanography
Parameter identification
Regional climate models
Regional climates
Seasonal variation
Seasonal variations
Seasonality
Summer
Weather forecasting
title Dryline characteristics in North America’s historical and future climates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A22%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dryline%20characteristics%20in%20North%20America%E2%80%99s%20historical%20and%20future%20climates&rft.jtitle=Climate%20dynamics&rft.au=Scaff,%20Lucia&rft.date=2021-10-01&rft.volume=57&rft.issue=7-8&rft.spage=2171&rft.epage=2188&rft.pages=2171-2188&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-021-05800-1&rft_dat=%3Cgale_proqu%3EA675852709%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2573151444&rft_id=info:pmid/&rft_galeid=A675852709&rfr_iscdi=true