Coupling kinetic and continuum using data-driven maximum entropy distribution

•Applying machine learning (ANN/GP) on closure problem by maximum entropy ansatz.•Recovering bi-modal density using data-driven maximum entropy distribution.•Leveraging machine learning for hybrid kinetic-continuum particle solver.•Validating data-driven NSF-Boltzmann solver for Sod's shock tub...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2021-11, Vol.444, p.110542, Article 110542
Hauptverfasser: Sadr, Mohsen, Wang, Qian, Gorji, M. Hossein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 110542
container_title Journal of computational physics
container_volume 444
creator Sadr, Mohsen
Wang, Qian
Gorji, M. Hossein
description •Applying machine learning (ANN/GP) on closure problem by maximum entropy ansatz.•Recovering bi-modal density using data-driven maximum entropy distribution.•Leveraging machine learning for hybrid kinetic-continuum particle solver.•Validating data-driven NSF-Boltzmann solver for Sod's shock tube.•Achieving accurate, efficient, and robust hybrid particle solver. An important class of multi-scale flow scenarios deals with an interplay between kinetic and continuum phenomena. While hybrid solvers provide a natural way to cope with these settings, two issues restrict their performance. Foremost, the inverse problem implied by estimating distributions has to be addressed, to provide boundary conditions for the kinetic solver. The next issue comes from defining a robust yet accurate switching criterion between the two solvers. This study introduces a data-driven kinetic-continuum coupling, where the Maximum-Entropy-Distribution (MED) is employed to parametrize distributions arising from continuum field variables. Two regression methodologies of Gaussian-Processes (GPs) and Artificial-Neural-Networks (ANNs) are utilized to predict MEDs efficiently. Hence the MED estimates are employed to carry out the coupling, besides providing a switching criterion. To achieve the latter, a continuum breakdown parameter is defined by means of the Fisher information distance computed from the MED estimates. We test the performance of our devised MED estimators by recovering bi-modal densities. Next, MED estimates are integrated into a hybrid kinetic-continuum solution algorithm. Here Direct Simulation Monte-Carlo (DSMC) and Smoothed-Particle Hydrodynamics (SPH) are chosen as kinetic and continuum solvers, respectively. The problem of monatomic gas inside Sod's shock tube is investigated, where DSMC-SPH coupling is realized by applying the devised MED estimates. Very good agreements with respect to benchmark solutions along with a promising speed-up are observed in our reported test cases.
doi_str_mv 10.1016/j.jcp.2021.110542
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2573021912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002199912100437X</els_id><sourcerecordid>2573021912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-e975b985fd9bcb700b2471de76e4791782ed29dcb5d94c0a969f36f6127d23063</originalsourceid><addsrcrecordid>eNp9kE9PxCAQxYnRxHX1A3hr4rkVaAslnszGf8kaL3omLUwNdQsV6Mb99rKpZ09zeO_NzPshdE1wQTBht0MxqKmgmJKCEFxX9AStCBY4p5ywU7TCScmFEOQcXYQwYIybumpW6HXj5mln7Gf2ZSxEo7LW6kw5G42d5zGbw1HTbWxz7c0ebDa2P2ZMCtjo3XTItAnRm26OxtlLdNa3uwBXf3ONPh4f3jfP-fbt6WVzv81VyZqYg-B1J5q616JTHce4oxUnGjiDigvCGwqaCq26WotK4VYw0ZesZ4RyTUvMyjW6WfZO3n3PEKIc3OxtOilpzcvUVRCaXGRxKe9C8NDLyZux9QdJsDxSk4NM1OSRmlyopczdkoH0_t6Al0EZsAq08aCi1M78k_4Fch51FA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2573021912</pqid></control><display><type>article</type><title>Coupling kinetic and continuum using data-driven maximum entropy distribution</title><source>Elsevier ScienceDirect Journals</source><creator>Sadr, Mohsen ; Wang, Qian ; Gorji, M. Hossein</creator><creatorcontrib>Sadr, Mohsen ; Wang, Qian ; Gorji, M. Hossein</creatorcontrib><description>•Applying machine learning (ANN/GP) on closure problem by maximum entropy ansatz.•Recovering bi-modal density using data-driven maximum entropy distribution.•Leveraging machine learning for hybrid kinetic-continuum particle solver.•Validating data-driven NSF-Boltzmann solver for Sod's shock tube.•Achieving accurate, efficient, and robust hybrid particle solver. An important class of multi-scale flow scenarios deals with an interplay between kinetic and continuum phenomena. While hybrid solvers provide a natural way to cope with these settings, two issues restrict their performance. Foremost, the inverse problem implied by estimating distributions has to be addressed, to provide boundary conditions for the kinetic solver. The next issue comes from defining a robust yet accurate switching criterion between the two solvers. This study introduces a data-driven kinetic-continuum coupling, where the Maximum-Entropy-Distribution (MED) is employed to parametrize distributions arising from continuum field variables. Two regression methodologies of Gaussian-Processes (GPs) and Artificial-Neural-Networks (ANNs) are utilized to predict MEDs efficiently. Hence the MED estimates are employed to carry out the coupling, besides providing a switching criterion. To achieve the latter, a continuum breakdown parameter is defined by means of the Fisher information distance computed from the MED estimates. We test the performance of our devised MED estimators by recovering bi-modal densities. Next, MED estimates are integrated into a hybrid kinetic-continuum solution algorithm. Here Direct Simulation Monte-Carlo (DSMC) and Smoothed-Particle Hydrodynamics (SPH) are chosen as kinetic and continuum solvers, respectively. The problem of monatomic gas inside Sod's shock tube is investigated, where DSMC-SPH coupling is realized by applying the devised MED estimates. Very good agreements with respect to benchmark solutions along with a promising speed-up are observed in our reported test cases.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2021.110542</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Algorithms ; Artificial Neural Network ; Boundary conditions ; Computational physics ; Coupling ; Coupling continuum and kinetic scales ; Criteria ; Direct simulation Monte Carlo method ; Estimates ; Fluid flow ; Gaussian process ; Inverse problems ; Maximum entropy ; Maximum entropy distribution ; Monatomic gases ; Neural networks ; Smooth particle hydrodynamics ; Solvers ; Switching</subject><ispartof>Journal of computational physics, 2021-11, Vol.444, p.110542, Article 110542</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Nov 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-e975b985fd9bcb700b2471de76e4791782ed29dcb5d94c0a969f36f6127d23063</citedby><cites>FETCH-LOGICAL-c368t-e975b985fd9bcb700b2471de76e4791782ed29dcb5d94c0a969f36f6127d23063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2021.110542$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Sadr, Mohsen</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Gorji, M. Hossein</creatorcontrib><title>Coupling kinetic and continuum using data-driven maximum entropy distribution</title><title>Journal of computational physics</title><description>•Applying machine learning (ANN/GP) on closure problem by maximum entropy ansatz.•Recovering bi-modal density using data-driven maximum entropy distribution.•Leveraging machine learning for hybrid kinetic-continuum particle solver.•Validating data-driven NSF-Boltzmann solver for Sod's shock tube.•Achieving accurate, efficient, and robust hybrid particle solver. An important class of multi-scale flow scenarios deals with an interplay between kinetic and continuum phenomena. While hybrid solvers provide a natural way to cope with these settings, two issues restrict their performance. Foremost, the inverse problem implied by estimating distributions has to be addressed, to provide boundary conditions for the kinetic solver. The next issue comes from defining a robust yet accurate switching criterion between the two solvers. This study introduces a data-driven kinetic-continuum coupling, where the Maximum-Entropy-Distribution (MED) is employed to parametrize distributions arising from continuum field variables. Two regression methodologies of Gaussian-Processes (GPs) and Artificial-Neural-Networks (ANNs) are utilized to predict MEDs efficiently. Hence the MED estimates are employed to carry out the coupling, besides providing a switching criterion. To achieve the latter, a continuum breakdown parameter is defined by means of the Fisher information distance computed from the MED estimates. We test the performance of our devised MED estimators by recovering bi-modal densities. Next, MED estimates are integrated into a hybrid kinetic-continuum solution algorithm. Here Direct Simulation Monte-Carlo (DSMC) and Smoothed-Particle Hydrodynamics (SPH) are chosen as kinetic and continuum solvers, respectively. The problem of monatomic gas inside Sod's shock tube is investigated, where DSMC-SPH coupling is realized by applying the devised MED estimates. Very good agreements with respect to benchmark solutions along with a promising speed-up are observed in our reported test cases.</description><subject>Algorithms</subject><subject>Artificial Neural Network</subject><subject>Boundary conditions</subject><subject>Computational physics</subject><subject>Coupling</subject><subject>Coupling continuum and kinetic scales</subject><subject>Criteria</subject><subject>Direct simulation Monte Carlo method</subject><subject>Estimates</subject><subject>Fluid flow</subject><subject>Gaussian process</subject><subject>Inverse problems</subject><subject>Maximum entropy</subject><subject>Maximum entropy distribution</subject><subject>Monatomic gases</subject><subject>Neural networks</subject><subject>Smooth particle hydrodynamics</subject><subject>Solvers</subject><subject>Switching</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PxCAQxYnRxHX1A3hr4rkVaAslnszGf8kaL3omLUwNdQsV6Mb99rKpZ09zeO_NzPshdE1wQTBht0MxqKmgmJKCEFxX9AStCBY4p5ywU7TCScmFEOQcXYQwYIybumpW6HXj5mln7Gf2ZSxEo7LW6kw5G42d5zGbw1HTbWxz7c0ebDa2P2ZMCtjo3XTItAnRm26OxtlLdNa3uwBXf3ONPh4f3jfP-fbt6WVzv81VyZqYg-B1J5q616JTHce4oxUnGjiDigvCGwqaCq26WotK4VYw0ZesZ4RyTUvMyjW6WfZO3n3PEKIc3OxtOilpzcvUVRCaXGRxKe9C8NDLyZux9QdJsDxSk4NM1OSRmlyopczdkoH0_t6Al0EZsAq08aCi1M78k_4Fch51FA</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Sadr, Mohsen</creator><creator>Wang, Qian</creator><creator>Gorji, M. Hossein</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20211101</creationdate><title>Coupling kinetic and continuum using data-driven maximum entropy distribution</title><author>Sadr, Mohsen ; Wang, Qian ; Gorji, M. Hossein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-e975b985fd9bcb700b2471de76e4791782ed29dcb5d94c0a969f36f6127d23063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Neural Network</topic><topic>Boundary conditions</topic><topic>Computational physics</topic><topic>Coupling</topic><topic>Coupling continuum and kinetic scales</topic><topic>Criteria</topic><topic>Direct simulation Monte Carlo method</topic><topic>Estimates</topic><topic>Fluid flow</topic><topic>Gaussian process</topic><topic>Inverse problems</topic><topic>Maximum entropy</topic><topic>Maximum entropy distribution</topic><topic>Monatomic gases</topic><topic>Neural networks</topic><topic>Smooth particle hydrodynamics</topic><topic>Solvers</topic><topic>Switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadr, Mohsen</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Gorji, M. Hossein</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadr, Mohsen</au><au>Wang, Qian</au><au>Gorji, M. Hossein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling kinetic and continuum using data-driven maximum entropy distribution</atitle><jtitle>Journal of computational physics</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>444</volume><spage>110542</spage><pages>110542-</pages><artnum>110542</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>•Applying machine learning (ANN/GP) on closure problem by maximum entropy ansatz.•Recovering bi-modal density using data-driven maximum entropy distribution.•Leveraging machine learning for hybrid kinetic-continuum particle solver.•Validating data-driven NSF-Boltzmann solver for Sod's shock tube.•Achieving accurate, efficient, and robust hybrid particle solver. An important class of multi-scale flow scenarios deals with an interplay between kinetic and continuum phenomena. While hybrid solvers provide a natural way to cope with these settings, two issues restrict their performance. Foremost, the inverse problem implied by estimating distributions has to be addressed, to provide boundary conditions for the kinetic solver. The next issue comes from defining a robust yet accurate switching criterion between the two solvers. This study introduces a data-driven kinetic-continuum coupling, where the Maximum-Entropy-Distribution (MED) is employed to parametrize distributions arising from continuum field variables. Two regression methodologies of Gaussian-Processes (GPs) and Artificial-Neural-Networks (ANNs) are utilized to predict MEDs efficiently. Hence the MED estimates are employed to carry out the coupling, besides providing a switching criterion. To achieve the latter, a continuum breakdown parameter is defined by means of the Fisher information distance computed from the MED estimates. We test the performance of our devised MED estimators by recovering bi-modal densities. Next, MED estimates are integrated into a hybrid kinetic-continuum solution algorithm. Here Direct Simulation Monte-Carlo (DSMC) and Smoothed-Particle Hydrodynamics (SPH) are chosen as kinetic and continuum solvers, respectively. The problem of monatomic gas inside Sod's shock tube is investigated, where DSMC-SPH coupling is realized by applying the devised MED estimates. Very good agreements with respect to benchmark solutions along with a promising speed-up are observed in our reported test cases.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2021.110542</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2021-11, Vol.444, p.110542, Article 110542
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_journals_2573021912
source Elsevier ScienceDirect Journals
subjects Algorithms
Artificial Neural Network
Boundary conditions
Computational physics
Coupling
Coupling continuum and kinetic scales
Criteria
Direct simulation Monte Carlo method
Estimates
Fluid flow
Gaussian process
Inverse problems
Maximum entropy
Maximum entropy distribution
Monatomic gases
Neural networks
Smooth particle hydrodynamics
Solvers
Switching
title Coupling kinetic and continuum using data-driven maximum entropy distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A24%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20kinetic%20and%20continuum%20using%20data-driven%20maximum%20entropy%20distribution&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Sadr,%20Mohsen&rft.date=2021-11-01&rft.volume=444&rft.spage=110542&rft.pages=110542-&rft.artnum=110542&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2021.110542&rft_dat=%3Cproquest_cross%3E2573021912%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2573021912&rft_id=info:pmid/&rft_els_id=S002199912100437X&rfr_iscdi=true