Energy storage mechanism of monocrystalline layered FePS3 and FePSe3 as active materials for Mg batteries and pseudocapacitors
•Mg2+ ions can be intercalated/deintercalated into/out of layered FePS3 reversibly.•Both Faradaic and non-Faradaic processes contribute to energy storage.•FePS3 behaves a high specific capacity (232.7 mAh g–1) at 0.2 A g–1.•FePS3 retains layered structure after cycles irrespective of the (de)interca...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2021-11, Vol.883, p.160822, Article 160822 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 160822 |
container_title | Journal of alloys and compounds |
container_volume | 883 |
creator | Wang, Mengqiao Han, Jonghyun Liu, Wei Kamiko, Masao Yagi, Shunsuke |
description | •Mg2+ ions can be intercalated/deintercalated into/out of layered FePS3 reversibly.•Both Faradaic and non-Faradaic processes contribute to energy storage.•FePS3 behaves a high specific capacity (232.7 mAh g–1) at 0.2 A g–1.•FePS3 retains layered structure after cycles irrespective of the (de)intercalation.
[Display omitted]
We report the reversible intercalation of Mg2+ ions into monocrystalline layered FePS3 in a tetrahydrofuran electrolyte containing 0.8 M PhMgCl and 0.4 M AlCl3. Mg2+ ions were not intercalated into FePSe3 because of the lower interlayer spacings (FePS3: 1.24 Å, FePSe3, 1.00 Å). The contribution of the non-Faradaic (double layer formation) and Faradaic (electrochemical intercalation/deintercalation, adsorption/desorption) processes toward the energy storage mechanism of FePS3 and FePSe3 were quantified. The maximum specific capacity displayed by FePS3 was 232.7 mAh g–1 at a current density of 0.2 A g–1, which was higher than that of FePSe3 (153.1 mAh g–1). Even at high current density (2 A g–1), FePS3 exhibited a specific capacity of 100.7 mAh g–1 after 450 cycles; the specific capacity of the less robust FePSe3 was just 26.3 mAh g–1. |
doi_str_mv | 10.1016/j.jallcom.2021.160822 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2573020058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838821022313</els_id><sourcerecordid>2573020058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-2ab2f054bd9850f416c7783dab922d1eaaa445c993131d20e5b48b664bb3b963</originalsourceid><addsrcrecordid>eNqFUMtKxDAUDaLg-PgEIeC6Yx5NJ12JiC8YUdB9uElvx5RpMyYdYTZ-uxnr3tU9XM6Dcwi54GzOGa-uunkH67UL_Vwwwee8YlqIAzLjeiGLsqrqQzJjtVCFllofk5OUOsYYryWfke-7AeNqR9MYIqyQ9ug-YPCpp6GlfRiCi7s0Zns_IF3DDiM29B5f3ySFYUKYYaLgRv-V9TBi9LBOtA2RPq-ohXH_wfTL3yTcNsHBBpzPiemMHLWZjOd_95S839-93z4Wy5eHp9ubZeFKxcZCgBUtU6Vtaq1YW_LKLRZaNmBrIRqOAFCWytW5kuSNYKhsqW1VldZKW1fylFxOtpsYPreYRtOFbRxyohFqIZlgTOnMUhPLxZBSxNZsou8h7gxnZr-06czf0ma_tJmWzrrrSYe5wZfHaJLzODhsfEQ3mib4fxx-ANHvis4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2573020058</pqid></control><display><type>article</type><title>Energy storage mechanism of monocrystalline layered FePS3 and FePSe3 as active materials for Mg batteries and pseudocapacitors</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Mengqiao ; Han, Jonghyun ; Liu, Wei ; Kamiko, Masao ; Yagi, Shunsuke</creator><creatorcontrib>Wang, Mengqiao ; Han, Jonghyun ; Liu, Wei ; Kamiko, Masao ; Yagi, Shunsuke</creatorcontrib><description>•Mg2+ ions can be intercalated/deintercalated into/out of layered FePS3 reversibly.•Both Faradaic and non-Faradaic processes contribute to energy storage.•FePS3 behaves a high specific capacity (232.7 mAh g–1) at 0.2 A g–1.•FePS3 retains layered structure after cycles irrespective of the (de)intercalation.
[Display omitted]
We report the reversible intercalation of Mg2+ ions into monocrystalline layered FePS3 in a tetrahydrofuran electrolyte containing 0.8 M PhMgCl and 0.4 M AlCl3. Mg2+ ions were not intercalated into FePSe3 because of the lower interlayer spacings (FePS3: 1.24 Å, FePSe3, 1.00 Å). The contribution of the non-Faradaic (double layer formation) and Faradaic (electrochemical intercalation/deintercalation, adsorption/desorption) processes toward the energy storage mechanism of FePS3 and FePSe3 were quantified. The maximum specific capacity displayed by FePS3 was 232.7 mAh g–1 at a current density of 0.2 A g–1, which was higher than that of FePSe3 (153.1 mAh g–1). Even at high current density (2 A g–1), FePS3 exhibited a specific capacity of 100.7 mAh g–1 after 450 cycles; the specific capacity of the less robust FePSe3 was just 26.3 mAh g–1.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2021.160822</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Aluminum chloride ; Current density ; Energy storage ; Intercalation ; Intercalation/deintercalation ; Interlayers ; Layered structure ; Phosphorous trichalcogenide ; Pseudocapacitor ; Tetrahydrofuran</subject><ispartof>Journal of alloys and compounds, 2021-11, Vol.883, p.160822, Article 160822</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 25, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-2ab2f054bd9850f416c7783dab922d1eaaa445c993131d20e5b48b664bb3b963</citedby><cites>FETCH-LOGICAL-c450t-2ab2f054bd9850f416c7783dab922d1eaaa445c993131d20e5b48b664bb3b963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925838821022313$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Wang, Mengqiao</creatorcontrib><creatorcontrib>Han, Jonghyun</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Kamiko, Masao</creatorcontrib><creatorcontrib>Yagi, Shunsuke</creatorcontrib><title>Energy storage mechanism of monocrystalline layered FePS3 and FePSe3 as active materials for Mg batteries and pseudocapacitors</title><title>Journal of alloys and compounds</title><description>•Mg2+ ions can be intercalated/deintercalated into/out of layered FePS3 reversibly.•Both Faradaic and non-Faradaic processes contribute to energy storage.•FePS3 behaves a high specific capacity (232.7 mAh g–1) at 0.2 A g–1.•FePS3 retains layered structure after cycles irrespective of the (de)intercalation.
[Display omitted]
We report the reversible intercalation of Mg2+ ions into monocrystalline layered FePS3 in a tetrahydrofuran electrolyte containing 0.8 M PhMgCl and 0.4 M AlCl3. Mg2+ ions were not intercalated into FePSe3 because of the lower interlayer spacings (FePS3: 1.24 Å, FePSe3, 1.00 Å). The contribution of the non-Faradaic (double layer formation) and Faradaic (electrochemical intercalation/deintercalation, adsorption/desorption) processes toward the energy storage mechanism of FePS3 and FePSe3 were quantified. The maximum specific capacity displayed by FePS3 was 232.7 mAh g–1 at a current density of 0.2 A g–1, which was higher than that of FePSe3 (153.1 mAh g–1). Even at high current density (2 A g–1), FePS3 exhibited a specific capacity of 100.7 mAh g–1 after 450 cycles; the specific capacity of the less robust FePSe3 was just 26.3 mAh g–1.</description><subject>Aluminum chloride</subject><subject>Current density</subject><subject>Energy storage</subject><subject>Intercalation</subject><subject>Intercalation/deintercalation</subject><subject>Interlayers</subject><subject>Layered structure</subject><subject>Phosphorous trichalcogenide</subject><subject>Pseudocapacitor</subject><subject>Tetrahydrofuran</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUMtKxDAUDaLg-PgEIeC6Yx5NJ12JiC8YUdB9uElvx5RpMyYdYTZ-uxnr3tU9XM6Dcwi54GzOGa-uunkH67UL_Vwwwee8YlqIAzLjeiGLsqrqQzJjtVCFllofk5OUOsYYryWfke-7AeNqR9MYIqyQ9ug-YPCpp6GlfRiCi7s0Zns_IF3DDiM29B5f3ySFYUKYYaLgRv-V9TBi9LBOtA2RPq-ohXH_wfTL3yTcNsHBBpzPiemMHLWZjOd_95S839-93z4Wy5eHp9ubZeFKxcZCgBUtU6Vtaq1YW_LKLRZaNmBrIRqOAFCWytW5kuSNYKhsqW1VldZKW1fylFxOtpsYPreYRtOFbRxyohFqIZlgTOnMUhPLxZBSxNZsou8h7gxnZr-06czf0ma_tJmWzrrrSYe5wZfHaJLzODhsfEQ3mib4fxx-ANHvis4</recordid><startdate>20211125</startdate><enddate>20211125</enddate><creator>Wang, Mengqiao</creator><creator>Han, Jonghyun</creator><creator>Liu, Wei</creator><creator>Kamiko, Masao</creator><creator>Yagi, Shunsuke</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20211125</creationdate><title>Energy storage mechanism of monocrystalline layered FePS3 and FePSe3 as active materials for Mg batteries and pseudocapacitors</title><author>Wang, Mengqiao ; Han, Jonghyun ; Liu, Wei ; Kamiko, Masao ; Yagi, Shunsuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-2ab2f054bd9850f416c7783dab922d1eaaa445c993131d20e5b48b664bb3b963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum chloride</topic><topic>Current density</topic><topic>Energy storage</topic><topic>Intercalation</topic><topic>Intercalation/deintercalation</topic><topic>Interlayers</topic><topic>Layered structure</topic><topic>Phosphorous trichalcogenide</topic><topic>Pseudocapacitor</topic><topic>Tetrahydrofuran</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Mengqiao</creatorcontrib><creatorcontrib>Han, Jonghyun</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Kamiko, Masao</creatorcontrib><creatorcontrib>Yagi, Shunsuke</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Mengqiao</au><au>Han, Jonghyun</au><au>Liu, Wei</au><au>Kamiko, Masao</au><au>Yagi, Shunsuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy storage mechanism of monocrystalline layered FePS3 and FePSe3 as active materials for Mg batteries and pseudocapacitors</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2021-11-25</date><risdate>2021</risdate><volume>883</volume><spage>160822</spage><pages>160822-</pages><artnum>160822</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>•Mg2+ ions can be intercalated/deintercalated into/out of layered FePS3 reversibly.•Both Faradaic and non-Faradaic processes contribute to energy storage.•FePS3 behaves a high specific capacity (232.7 mAh g–1) at 0.2 A g–1.•FePS3 retains layered structure after cycles irrespective of the (de)intercalation.
[Display omitted]
We report the reversible intercalation of Mg2+ ions into monocrystalline layered FePS3 in a tetrahydrofuran electrolyte containing 0.8 M PhMgCl and 0.4 M AlCl3. Mg2+ ions were not intercalated into FePSe3 because of the lower interlayer spacings (FePS3: 1.24 Å, FePSe3, 1.00 Å). The contribution of the non-Faradaic (double layer formation) and Faradaic (electrochemical intercalation/deintercalation, adsorption/desorption) processes toward the energy storage mechanism of FePS3 and FePSe3 were quantified. The maximum specific capacity displayed by FePS3 was 232.7 mAh g–1 at a current density of 0.2 A g–1, which was higher than that of FePSe3 (153.1 mAh g–1). Even at high current density (2 A g–1), FePS3 exhibited a specific capacity of 100.7 mAh g–1 after 450 cycles; the specific capacity of the less robust FePSe3 was just 26.3 mAh g–1.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2021.160822</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2021-11, Vol.883, p.160822, Article 160822 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_journals_2573020058 |
source | Elsevier ScienceDirect Journals |
subjects | Aluminum chloride Current density Energy storage Intercalation Intercalation/deintercalation Interlayers Layered structure Phosphorous trichalcogenide Pseudocapacitor Tetrahydrofuran |
title | Energy storage mechanism of monocrystalline layered FePS3 and FePSe3 as active materials for Mg batteries and pseudocapacitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20storage%20mechanism%20of%20monocrystalline%20layered%20FePS3%20and%20FePSe3%20as%20active%20materials%20for%20Mg%20batteries%20and%20pseudocapacitors&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Wang,%20Mengqiao&rft.date=2021-11-25&rft.volume=883&rft.spage=160822&rft.pages=160822-&rft.artnum=160822&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2021.160822&rft_dat=%3Cproquest_cross%3E2573020058%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2573020058&rft_id=info:pmid/&rft_els_id=S0925838821022313&rfr_iscdi=true |