Elliptic boundary value problems associated with isometric group actions

Given a manifold with boundary endowed with an action of a discrete group on it, we consider the algebra of operators generated by elements in the Boutet de Monvel algebra of pseudodifferential boundary value problems and shift operators acting on functions on the manifold and its boundary. Provided...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pseudo-differential operators and applications 2021-12, Vol.12 (4), Article 50
Hauptverfasser: Boltachev, A. V., Savin, A. Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Journal of pseudo-differential operators and applications
container_volume 12
creator Boltachev, A. V.
Savin, A. Yu
description Given a manifold with boundary endowed with an action of a discrete group on it, we consider the algebra of operators generated by elements in the Boutet de Monvel algebra of pseudodifferential boundary value problems and shift operators acting on functions on the manifold and its boundary. Provided that the group is of polynomial growth and its action is isometric, we construct a Chern character for elliptic elements in this algebra with values in a de Rham type cohomology of the fixed point manifolds for the group action and obtain an index formula in terms of this Chern character. Our index formula contains as special cases the index formula by Fedosov for boundary value problems in the Boutet de Monvel algebra and the index formula by Nazaikinskii, Savin and Sternin for operators on a closed manifold associated with an isometric group action.
doi_str_mv 10.1007/s11868-021-00422-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2572968748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572968748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5ad29ece79057ad8cf61849f571a39765919d656b50df8564e32bc6240df9a883</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKcFz9F8bLLJUUq1QsGLgreQzWZrynazJlmt_97UFb05l5mB952PB4BLjK4xQtVNxFhwARHBEKGSEHg4ATPMOYFSypfT31rgc7CIcYdyUEkxpjOwXnWdG5IzRe3HvtHhs3jX3WiLIfi6s_tY6Bi9cTrZpvhw6bVw0e9tCtmxDX4cCm2S8328AGet7qJd_OQ5eL5bPS3XcPN4_7C83UBDsUyQ6YZIa2wlEat0I0zLsShlyyqsqaw4k1g2nPGaoaYVjJeWktpwUuZWaiHoHFxNc_OBb6ONSe38GPq8UhFWEclFVR5VZFKZ4GMMtlVDcPv8ncJIHaGpCZrK0NQ3NHXIJjqZYhb3Wxv-Rv_j-gI17XAC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572968748</pqid></control><display><type>article</type><title>Elliptic boundary value problems associated with isometric group actions</title><source>Springer Nature - Complete Springer Journals</source><creator>Boltachev, A. V. ; Savin, A. Yu</creator><creatorcontrib>Boltachev, A. V. ; Savin, A. Yu</creatorcontrib><description>Given a manifold with boundary endowed with an action of a discrete group on it, we consider the algebra of operators generated by elements in the Boutet de Monvel algebra of pseudodifferential boundary value problems and shift operators acting on functions on the manifold and its boundary. Provided that the group is of polynomial growth and its action is isometric, we construct a Chern character for elliptic elements in this algebra with values in a de Rham type cohomology of the fixed point manifolds for the group action and obtain an index formula in terms of this Chern character. Our index formula contains as special cases the index formula by Fedosov for boundary value problems in the Boutet de Monvel algebra and the index formula by Nazaikinskii, Savin and Sternin for operators on a closed manifold associated with an isometric group action.</description><identifier>ISSN: 1662-9981</identifier><identifier>EISSN: 1662-999X</identifier><identifier>DOI: 10.1007/s11868-021-00422-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Boundary value problems ; Fixed points (mathematics) ; Functional Analysis ; Homology ; Manifolds ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Operators (mathematics) ; Partial Differential Equations ; Polynomials</subject><ispartof>Journal of pseudo-differential operators and applications, 2021-12, Vol.12 (4), Article 50</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5ad29ece79057ad8cf61849f571a39765919d656b50df8564e32bc6240df9a883</citedby><cites>FETCH-LOGICAL-c319t-5ad29ece79057ad8cf61849f571a39765919d656b50df8564e32bc6240df9a883</cites><orcidid>0000-0002-7094-4117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11868-021-00422-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11868-021-00422-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Boltachev, A. V.</creatorcontrib><creatorcontrib>Savin, A. Yu</creatorcontrib><title>Elliptic boundary value problems associated with isometric group actions</title><title>Journal of pseudo-differential operators and applications</title><addtitle>J. Pseudo-Differ. Oper. Appl</addtitle><description>Given a manifold with boundary endowed with an action of a discrete group on it, we consider the algebra of operators generated by elements in the Boutet de Monvel algebra of pseudodifferential boundary value problems and shift operators acting on functions on the manifold and its boundary. Provided that the group is of polynomial growth and its action is isometric, we construct a Chern character for elliptic elements in this algebra with values in a de Rham type cohomology of the fixed point manifolds for the group action and obtain an index formula in terms of this Chern character. Our index formula contains as special cases the index formula by Fedosov for boundary value problems in the Boutet de Monvel algebra and the index formula by Nazaikinskii, Savin and Sternin for operators on a closed manifold associated with an isometric group action.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Boundary value problems</subject><subject>Fixed points (mathematics)</subject><subject>Functional Analysis</subject><subject>Homology</subject><subject>Manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Operators (mathematics)</subject><subject>Partial Differential Equations</subject><subject>Polynomials</subject><issn>1662-9981</issn><issn>1662-999X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGr_gKcFz9F8bLLJUUq1QsGLgreQzWZrynazJlmt_97UFb05l5mB952PB4BLjK4xQtVNxFhwARHBEKGSEHg4ATPMOYFSypfT31rgc7CIcYdyUEkxpjOwXnWdG5IzRe3HvtHhs3jX3WiLIfi6s_tY6Bi9cTrZpvhw6bVw0e9tCtmxDX4cCm2S8328AGet7qJd_OQ5eL5bPS3XcPN4_7C83UBDsUyQ6YZIa2wlEat0I0zLsShlyyqsqaw4k1g2nPGaoaYVjJeWktpwUuZWaiHoHFxNc_OBb6ONSe38GPq8UhFWEclFVR5VZFKZ4GMMtlVDcPv8ncJIHaGpCZrK0NQ3NHXIJjqZYhb3Wxv-Rv_j-gI17XAC</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Boltachev, A. V.</creator><creator>Savin, A. Yu</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7094-4117</orcidid></search><sort><creationdate>20211201</creationdate><title>Elliptic boundary value problems associated with isometric group actions</title><author>Boltachev, A. V. ; Savin, A. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5ad29ece79057ad8cf61849f571a39765919d656b50df8564e32bc6240df9a883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Boundary value problems</topic><topic>Fixed points (mathematics)</topic><topic>Functional Analysis</topic><topic>Homology</topic><topic>Manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Operators (mathematics)</topic><topic>Partial Differential Equations</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Boltachev, A. V.</creatorcontrib><creatorcontrib>Savin, A. Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of pseudo-differential operators and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boltachev, A. V.</au><au>Savin, A. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elliptic boundary value problems associated with isometric group actions</atitle><jtitle>Journal of pseudo-differential operators and applications</jtitle><stitle>J. Pseudo-Differ. Oper. Appl</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>12</volume><issue>4</issue><artnum>50</artnum><issn>1662-9981</issn><eissn>1662-999X</eissn><abstract>Given a manifold with boundary endowed with an action of a discrete group on it, we consider the algebra of operators generated by elements in the Boutet de Monvel algebra of pseudodifferential boundary value problems and shift operators acting on functions on the manifold and its boundary. Provided that the group is of polynomial growth and its action is isometric, we construct a Chern character for elliptic elements in this algebra with values in a de Rham type cohomology of the fixed point manifolds for the group action and obtain an index formula in terms of this Chern character. Our index formula contains as special cases the index formula by Fedosov for boundary value problems in the Boutet de Monvel algebra and the index formula by Nazaikinskii, Savin and Sternin for operators on a closed manifold associated with an isometric group action.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11868-021-00422-x</doi><orcidid>https://orcid.org/0000-0002-7094-4117</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1662-9981
ispartof Journal of pseudo-differential operators and applications, 2021-12, Vol.12 (4), Article 50
issn 1662-9981
1662-999X
language eng
recordid cdi_proquest_journals_2572968748
source Springer Nature - Complete Springer Journals
subjects Algebra
Analysis
Applications of Mathematics
Boundary value problems
Fixed points (mathematics)
Functional Analysis
Homology
Manifolds
Mathematical analysis
Mathematics
Mathematics and Statistics
Operator Theory
Operators (mathematics)
Partial Differential Equations
Polynomials
title Elliptic boundary value problems associated with isometric group actions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A25%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elliptic%20boundary%20value%20problems%20associated%20with%20isometric%20group%20actions&rft.jtitle=Journal%20of%20pseudo-differential%20operators%20and%20applications&rft.au=Boltachev,%20A.%20V.&rft.date=2021-12-01&rft.volume=12&rft.issue=4&rft.artnum=50&rft.issn=1662-9981&rft.eissn=1662-999X&rft_id=info:doi/10.1007/s11868-021-00422-x&rft_dat=%3Cproquest_cross%3E2572968748%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572968748&rft_id=info:pmid/&rfr_iscdi=true