Multi-objective optimization of a municipal solid waste gasifier

Municipal solid waste (MSW) is the largest waste stream around the world and has a great potential for syngas generation through gasification process. Many researchers have worked on biomass and coal gasification; however, a few of them have considered MSW as feedstock. The present study employs a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomass conversion and biorefinery 2021-10, Vol.11 (5), p.1703-1718
Hauptverfasser: Bahari, Ali, Atashkari, Kazem, Mahmoudimehr, Javad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1718
container_issue 5
container_start_page 1703
container_title Biomass conversion and biorefinery
container_volume 11
creator Bahari, Ali
Atashkari, Kazem
Mahmoudimehr, Javad
description Municipal solid waste (MSW) is the largest waste stream around the world and has a great potential for syngas generation through gasification process. Many researchers have worked on biomass and coal gasification; however, a few of them have considered MSW as feedstock. The present study employs a combination of computational fluid dynamics (CFD) approach, response surface method (RSM), and genetic algorithm (GA) to optimize a MSW-driven gasifier with the simultaneous consideration of efficiency and environmental effects. This study is conducted for Rasht city which is located in the north of Iran and highly suffers from waste disposal problems. This work is to investigate the influence of major parameters on the performance of the gasifier and to find out the optimal set of design variables. The results illustrate that the efficiency of the gasifier is more influenced by the geometric parameters rather than equivalence ratio; however, the effects of equivalence ratio and geometrical parameters on total emission of pollutants are comparable. The efficiency and total emission of pollutants of the best trade-off design (or optimal design) are observed to be 32.2% and 4.8 ppm, respectively.
doi_str_mv 10.1007/s13399-019-00592-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2572968663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572968663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-586a1f4f8acc1b3a482c89fea79bd36181487c903e2ab46be1793a9a60d22b633</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouKz7Ap4CnquZpE2Tm7KoK6x40XNIs8mSpdvUJFX06a1b0ZuHYebw_f_Ah9A5kEsgpL5KwJiUBYFxSCVpAUdoRkGSggvKjn9vqE7RIqUdIYSymglGZuj6cWizL0Kzsyb7N4tDn_3ef-rsQ4eDwxrvh84b3-sWp9D6DX7XKVu81ck7b-MZOnG6TXbxs-fo5e72ebkq1k_3D8ubdWEYyFxUgmtwpRPaGGiYLgU1Qjqra9lsGAcBpaiNJMxS3ZS8sVBLpqXmZENpwxmbo4upt4_hdbApq10YYje-VLSqqeSCHyg6USaGlKJ1qo9-r-OHAqK-ZalJlhplqYMsBWOITaE0wt3Wxr_qf1JfQMNsFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572968663</pqid></control><display><type>article</type><title>Multi-objective optimization of a municipal solid waste gasifier</title><source>SpringerNature Journals</source><creator>Bahari, Ali ; Atashkari, Kazem ; Mahmoudimehr, Javad</creator><creatorcontrib>Bahari, Ali ; Atashkari, Kazem ; Mahmoudimehr, Javad</creatorcontrib><description>Municipal solid waste (MSW) is the largest waste stream around the world and has a great potential for syngas generation through gasification process. Many researchers have worked on biomass and coal gasification; however, a few of them have considered MSW as feedstock. The present study employs a combination of computational fluid dynamics (CFD) approach, response surface method (RSM), and genetic algorithm (GA) to optimize a MSW-driven gasifier with the simultaneous consideration of efficiency and environmental effects. This study is conducted for Rasht city which is located in the north of Iran and highly suffers from waste disposal problems. This work is to investigate the influence of major parameters on the performance of the gasifier and to find out the optimal set of design variables. The results illustrate that the efficiency of the gasifier is more influenced by the geometric parameters rather than equivalence ratio; however, the effects of equivalence ratio and geometrical parameters on total emission of pollutants are comparable. The efficiency and total emission of pollutants of the best trade-off design (or optimal design) are observed to be 32.2% and 4.8 ppm, respectively.</description><identifier>ISSN: 2190-6815</identifier><identifier>EISSN: 2190-6823</identifier><identifier>DOI: 10.1007/s13399-019-00592-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biotechnology ; Coal gasification ; Computational fluid dynamics ; Efficiency ; Emission ; Energy ; Environmental effects ; Equivalence ratio ; Genetic algorithms ; Multiple objective analysis ; Municipal solid waste ; Municipal waste management ; Optimization ; Original Article ; Parameters ; Pollutants ; Renewable and Green Energy ; Response surface methodology ; Solid waste management ; Synthesis gas ; Waste disposal</subject><ispartof>Biomass conversion and biorefinery, 2021-10, Vol.11 (5), p.1703-1718</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-586a1f4f8acc1b3a482c89fea79bd36181487c903e2ab46be1793a9a60d22b633</citedby><cites>FETCH-LOGICAL-c319t-586a1f4f8acc1b3a482c89fea79bd36181487c903e2ab46be1793a9a60d22b633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13399-019-00592-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13399-019-00592-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Bahari, Ali</creatorcontrib><creatorcontrib>Atashkari, Kazem</creatorcontrib><creatorcontrib>Mahmoudimehr, Javad</creatorcontrib><title>Multi-objective optimization of a municipal solid waste gasifier</title><title>Biomass conversion and biorefinery</title><addtitle>Biomass Conv. Bioref</addtitle><description>Municipal solid waste (MSW) is the largest waste stream around the world and has a great potential for syngas generation through gasification process. Many researchers have worked on biomass and coal gasification; however, a few of them have considered MSW as feedstock. The present study employs a combination of computational fluid dynamics (CFD) approach, response surface method (RSM), and genetic algorithm (GA) to optimize a MSW-driven gasifier with the simultaneous consideration of efficiency and environmental effects. This study is conducted for Rasht city which is located in the north of Iran and highly suffers from waste disposal problems. This work is to investigate the influence of major parameters on the performance of the gasifier and to find out the optimal set of design variables. The results illustrate that the efficiency of the gasifier is more influenced by the geometric parameters rather than equivalence ratio; however, the effects of equivalence ratio and geometrical parameters on total emission of pollutants are comparable. The efficiency and total emission of pollutants of the best trade-off design (or optimal design) are observed to be 32.2% and 4.8 ppm, respectively.</description><subject>Biotechnology</subject><subject>Coal gasification</subject><subject>Computational fluid dynamics</subject><subject>Efficiency</subject><subject>Emission</subject><subject>Energy</subject><subject>Environmental effects</subject><subject>Equivalence ratio</subject><subject>Genetic algorithms</subject><subject>Multiple objective analysis</subject><subject>Municipal solid waste</subject><subject>Municipal waste management</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Parameters</subject><subject>Pollutants</subject><subject>Renewable and Green Energy</subject><subject>Response surface methodology</subject><subject>Solid waste management</subject><subject>Synthesis gas</subject><subject>Waste disposal</subject><issn>2190-6815</issn><issn>2190-6823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouKz7Ap4CnquZpE2Tm7KoK6x40XNIs8mSpdvUJFX06a1b0ZuHYebw_f_Ah9A5kEsgpL5KwJiUBYFxSCVpAUdoRkGSggvKjn9vqE7RIqUdIYSymglGZuj6cWizL0Kzsyb7N4tDn_3ef-rsQ4eDwxrvh84b3-sWp9D6DX7XKVu81ck7b-MZOnG6TXbxs-fo5e72ebkq1k_3D8ubdWEYyFxUgmtwpRPaGGiYLgU1Qjqra9lsGAcBpaiNJMxS3ZS8sVBLpqXmZENpwxmbo4upt4_hdbApq10YYje-VLSqqeSCHyg6USaGlKJ1qo9-r-OHAqK-ZalJlhplqYMsBWOITaE0wt3Wxr_qf1JfQMNsFw</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Bahari, Ali</creator><creator>Atashkari, Kazem</creator><creator>Mahmoudimehr, Javad</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211001</creationdate><title>Multi-objective optimization of a municipal solid waste gasifier</title><author>Bahari, Ali ; Atashkari, Kazem ; Mahmoudimehr, Javad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-586a1f4f8acc1b3a482c89fea79bd36181487c903e2ab46be1793a9a60d22b633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biotechnology</topic><topic>Coal gasification</topic><topic>Computational fluid dynamics</topic><topic>Efficiency</topic><topic>Emission</topic><topic>Energy</topic><topic>Environmental effects</topic><topic>Equivalence ratio</topic><topic>Genetic algorithms</topic><topic>Multiple objective analysis</topic><topic>Municipal solid waste</topic><topic>Municipal waste management</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Parameters</topic><topic>Pollutants</topic><topic>Renewable and Green Energy</topic><topic>Response surface methodology</topic><topic>Solid waste management</topic><topic>Synthesis gas</topic><topic>Waste disposal</topic><toplevel>online_resources</toplevel><creatorcontrib>Bahari, Ali</creatorcontrib><creatorcontrib>Atashkari, Kazem</creatorcontrib><creatorcontrib>Mahmoudimehr, Javad</creatorcontrib><collection>CrossRef</collection><jtitle>Biomass conversion and biorefinery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bahari, Ali</au><au>Atashkari, Kazem</au><au>Mahmoudimehr, Javad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-objective optimization of a municipal solid waste gasifier</atitle><jtitle>Biomass conversion and biorefinery</jtitle><stitle>Biomass Conv. Bioref</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>11</volume><issue>5</issue><spage>1703</spage><epage>1718</epage><pages>1703-1718</pages><issn>2190-6815</issn><eissn>2190-6823</eissn><abstract>Municipal solid waste (MSW) is the largest waste stream around the world and has a great potential for syngas generation through gasification process. Many researchers have worked on biomass and coal gasification; however, a few of them have considered MSW as feedstock. The present study employs a combination of computational fluid dynamics (CFD) approach, response surface method (RSM), and genetic algorithm (GA) to optimize a MSW-driven gasifier with the simultaneous consideration of efficiency and environmental effects. This study is conducted for Rasht city which is located in the north of Iran and highly suffers from waste disposal problems. This work is to investigate the influence of major parameters on the performance of the gasifier and to find out the optimal set of design variables. The results illustrate that the efficiency of the gasifier is more influenced by the geometric parameters rather than equivalence ratio; however, the effects of equivalence ratio and geometrical parameters on total emission of pollutants are comparable. The efficiency and total emission of pollutants of the best trade-off design (or optimal design) are observed to be 32.2% and 4.8 ppm, respectively.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13399-019-00592-1</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2190-6815
ispartof Biomass conversion and biorefinery, 2021-10, Vol.11 (5), p.1703-1718
issn 2190-6815
2190-6823
language eng
recordid cdi_proquest_journals_2572968663
source SpringerNature Journals
subjects Biotechnology
Coal gasification
Computational fluid dynamics
Efficiency
Emission
Energy
Environmental effects
Equivalence ratio
Genetic algorithms
Multiple objective analysis
Municipal solid waste
Municipal waste management
Optimization
Original Article
Parameters
Pollutants
Renewable and Green Energy
Response surface methodology
Solid waste management
Synthesis gas
Waste disposal
title Multi-objective optimization of a municipal solid waste gasifier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A50%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-objective%20optimization%20of%20a%20municipal%20solid%20waste%20gasifier&rft.jtitle=Biomass%20conversion%20and%20biorefinery&rft.au=Bahari,%20Ali&rft.date=2021-10-01&rft.volume=11&rft.issue=5&rft.spage=1703&rft.epage=1718&rft.pages=1703-1718&rft.issn=2190-6815&rft.eissn=2190-6823&rft_id=info:doi/10.1007/s13399-019-00592-1&rft_dat=%3Cproquest_cross%3E2572968663%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572968663&rft_id=info:pmid/&rfr_iscdi=true