Activating Both Basal Plane and Edge Sites of Layered Cobalt Oxides for Boosted Water Oxidation
Layered AxCoO2 materials built by stacking layers of CoO2 slabs and inserting alkali ions in between them have shown a promising activity of oxygen evolution reaction (OER) due to their active edge sites. However, the large basal plane areas of the CoO2 slabs show too strong adsorption energy to the...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-09, Vol.31 (38), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 38 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 31 |
creator | Li, Yu Chen, Gao Zhu, Yanping Hu, Zhiwei Chan, Ting‐Shan She, Sixuan Dai, Jie Zhou, Wei Shao, Zongping |
description | Layered AxCoO2 materials built by stacking layers of CoO2 slabs and inserting alkali ions in between them have shown a promising activity of oxygen evolution reaction (OER) due to their active edge sites. However, the large basal plane areas of the CoO2 slabs show too strong adsorption energy to the reaction intermediates, which is unfavorable for the release of O2. Here, a simple cation‐exchange strategy based on Fe3+ and alkali ions is proposed to simultaneously activate both the basal plane and edge sites of AxCoO2 for the OER. X‐ray absorption spectroscopy has revealed that the Fe3+ ions deposit both on the surface and edge sites of the CoO2 slabs and enter the interlayer. The cation‐exchanged AxCoO2 electrodes show a boosted activity compared to their pristine and conventional Fe‐doped AxCoO2 counterparts. This phenomenon is mainly ascribed to the abundant edge‐sharing Co–Fe motifs at the edge sites and the charge redistribution in the basal plane sites induced by the insertion of Fe3+ ions. This work provides a novel method to fully exploit layer‐structured materials for efficient energy conversion.
A cation‐exchange strategy is proposed to simultaneously activate both the basal plane and edge sites of layered cobalt materials for the oxygen evolution reaction (OER). The as‐prepared materials show better OER activity than the pristine and conventional‐doped materials. This work provides a facile and controllable way to boost the OER performance of the layer structured materials. |
doi_str_mv | 10.1002/adfm.202103569 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2572906946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572906946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3179-4ca82a7d724af23fffdc4aa74ee000e4cd76cc85957da3426e51351f3b919a5d3</originalsourceid><addsrcrecordid>eNqFkM1PAjEUxBujiYhePTfxvNiP3S09AoKaYDBRo7fm0Q9csmyxLSr_vYsYPXp6k8z85iWD0DklPUoIuwTjVj1GGCW8KOUB6tCSlhknrH_4q-nLMTqJcUkIFYLnHaQGOlXvkKpmgYc-veIhRKjxfQ2NxdAYPDYLix-qZCP2Dk9ha4M1eOTnUCc8-6xMazgfWtjH1DrPkGz4NtpS35yiIwd1tGc_t4ueJuPH0U02nV3fjgbTTHMqZJZr6DMQRrAcHOPOOaNzAJFbSwixuTai1LpfyEIY4DkrbUF5QR2fSyqhMLyLLva96-DfNjYmtfSb0LQvFSsEk6SUedmmevuUDj7GYJ1ah2oFYasoUbsR1W5E9TtiC8g98FHVdvtPWg2uJnd_7BdOOHWL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572906946</pqid></control><display><type>article</type><title>Activating Both Basal Plane and Edge Sites of Layered Cobalt Oxides for Boosted Water Oxidation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Yu ; Chen, Gao ; Zhu, Yanping ; Hu, Zhiwei ; Chan, Ting‐Shan ; She, Sixuan ; Dai, Jie ; Zhou, Wei ; Shao, Zongping</creator><creatorcontrib>Li, Yu ; Chen, Gao ; Zhu, Yanping ; Hu, Zhiwei ; Chan, Ting‐Shan ; She, Sixuan ; Dai, Jie ; Zhou, Wei ; Shao, Zongping</creatorcontrib><description>Layered AxCoO2 materials built by stacking layers of CoO2 slabs and inserting alkali ions in between them have shown a promising activity of oxygen evolution reaction (OER) due to their active edge sites. However, the large basal plane areas of the CoO2 slabs show too strong adsorption energy to the reaction intermediates, which is unfavorable for the release of O2. Here, a simple cation‐exchange strategy based on Fe3+ and alkali ions is proposed to simultaneously activate both the basal plane and edge sites of AxCoO2 for the OER. X‐ray absorption spectroscopy has revealed that the Fe3+ ions deposit both on the surface and edge sites of the CoO2 slabs and enter the interlayer. The cation‐exchanged AxCoO2 electrodes show a boosted activity compared to their pristine and conventional Fe‐doped AxCoO2 counterparts. This phenomenon is mainly ascribed to the abundant edge‐sharing Co–Fe motifs at the edge sites and the charge redistribution in the basal plane sites induced by the insertion of Fe3+ ions. This work provides a novel method to fully exploit layer‐structured materials for efficient energy conversion.
A cation‐exchange strategy is proposed to simultaneously activate both the basal plane and edge sites of layered cobalt materials for the oxygen evolution reaction (OER). The as‐prepared materials show better OER activity than the pristine and conventional‐doped materials. This work provides a facile and controllable way to boost the OER performance of the layer structured materials.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202103569</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Basal plane ; cation exchange ; Cation exchanging ; charge redistribution ; Cobalt oxides ; Crystals ; Energy conversion ; Ferric ions ; Interlayers ; layered cobalt oxide ; Materials science ; Metal ions ; Oxidation ; oxygen evolution reaction ; Oxygen evolution reactions ; water splitting</subject><ispartof>Advanced functional materials, 2021-09, Vol.31 (38), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3179-4ca82a7d724af23fffdc4aa74ee000e4cd76cc85957da3426e51351f3b919a5d3</citedby><cites>FETCH-LOGICAL-c3179-4ca82a7d724af23fffdc4aa74ee000e4cd76cc85957da3426e51351f3b919a5d3</cites><orcidid>0000-0003-0322-095X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202103569$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202103569$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Chen, Gao</creatorcontrib><creatorcontrib>Zhu, Yanping</creatorcontrib><creatorcontrib>Hu, Zhiwei</creatorcontrib><creatorcontrib>Chan, Ting‐Shan</creatorcontrib><creatorcontrib>She, Sixuan</creatorcontrib><creatorcontrib>Dai, Jie</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Shao, Zongping</creatorcontrib><title>Activating Both Basal Plane and Edge Sites of Layered Cobalt Oxides for Boosted Water Oxidation</title><title>Advanced functional materials</title><description>Layered AxCoO2 materials built by stacking layers of CoO2 slabs and inserting alkali ions in between them have shown a promising activity of oxygen evolution reaction (OER) due to their active edge sites. However, the large basal plane areas of the CoO2 slabs show too strong adsorption energy to the reaction intermediates, which is unfavorable for the release of O2. Here, a simple cation‐exchange strategy based on Fe3+ and alkali ions is proposed to simultaneously activate both the basal plane and edge sites of AxCoO2 for the OER. X‐ray absorption spectroscopy has revealed that the Fe3+ ions deposit both on the surface and edge sites of the CoO2 slabs and enter the interlayer. The cation‐exchanged AxCoO2 electrodes show a boosted activity compared to their pristine and conventional Fe‐doped AxCoO2 counterparts. This phenomenon is mainly ascribed to the abundant edge‐sharing Co–Fe motifs at the edge sites and the charge redistribution in the basal plane sites induced by the insertion of Fe3+ ions. This work provides a novel method to fully exploit layer‐structured materials for efficient energy conversion.
A cation‐exchange strategy is proposed to simultaneously activate both the basal plane and edge sites of layered cobalt materials for the oxygen evolution reaction (OER). The as‐prepared materials show better OER activity than the pristine and conventional‐doped materials. This work provides a facile and controllable way to boost the OER performance of the layer structured materials.</description><subject>Basal plane</subject><subject>cation exchange</subject><subject>Cation exchanging</subject><subject>charge redistribution</subject><subject>Cobalt oxides</subject><subject>Crystals</subject><subject>Energy conversion</subject><subject>Ferric ions</subject><subject>Interlayers</subject><subject>layered cobalt oxide</subject><subject>Materials science</subject><subject>Metal ions</subject><subject>Oxidation</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>water splitting</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1PAjEUxBujiYhePTfxvNiP3S09AoKaYDBRo7fm0Q9csmyxLSr_vYsYPXp6k8z85iWD0DklPUoIuwTjVj1GGCW8KOUB6tCSlhknrH_4q-nLMTqJcUkIFYLnHaQGOlXvkKpmgYc-veIhRKjxfQ2NxdAYPDYLix-qZCP2Dk9ha4M1eOTnUCc8-6xMazgfWtjH1DrPkGz4NtpS35yiIwd1tGc_t4ueJuPH0U02nV3fjgbTTHMqZJZr6DMQRrAcHOPOOaNzAJFbSwixuTai1LpfyEIY4DkrbUF5QR2fSyqhMLyLLva96-DfNjYmtfSb0LQvFSsEk6SUedmmevuUDj7GYJ1ah2oFYasoUbsR1W5E9TtiC8g98FHVdvtPWg2uJnd_7BdOOHWL</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Li, Yu</creator><creator>Chen, Gao</creator><creator>Zhu, Yanping</creator><creator>Hu, Zhiwei</creator><creator>Chan, Ting‐Shan</creator><creator>She, Sixuan</creator><creator>Dai, Jie</creator><creator>Zhou, Wei</creator><creator>Shao, Zongping</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0322-095X</orcidid></search><sort><creationdate>20210901</creationdate><title>Activating Both Basal Plane and Edge Sites of Layered Cobalt Oxides for Boosted Water Oxidation</title><author>Li, Yu ; Chen, Gao ; Zhu, Yanping ; Hu, Zhiwei ; Chan, Ting‐Shan ; She, Sixuan ; Dai, Jie ; Zhou, Wei ; Shao, Zongping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3179-4ca82a7d724af23fffdc4aa74ee000e4cd76cc85957da3426e51351f3b919a5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Basal plane</topic><topic>cation exchange</topic><topic>Cation exchanging</topic><topic>charge redistribution</topic><topic>Cobalt oxides</topic><topic>Crystals</topic><topic>Energy conversion</topic><topic>Ferric ions</topic><topic>Interlayers</topic><topic>layered cobalt oxide</topic><topic>Materials science</topic><topic>Metal ions</topic><topic>Oxidation</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Chen, Gao</creatorcontrib><creatorcontrib>Zhu, Yanping</creatorcontrib><creatorcontrib>Hu, Zhiwei</creatorcontrib><creatorcontrib>Chan, Ting‐Shan</creatorcontrib><creatorcontrib>She, Sixuan</creatorcontrib><creatorcontrib>Dai, Jie</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Shao, Zongping</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yu</au><au>Chen, Gao</au><au>Zhu, Yanping</au><au>Hu, Zhiwei</au><au>Chan, Ting‐Shan</au><au>She, Sixuan</au><au>Dai, Jie</au><au>Zhou, Wei</au><au>Shao, Zongping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activating Both Basal Plane and Edge Sites of Layered Cobalt Oxides for Boosted Water Oxidation</atitle><jtitle>Advanced functional materials</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>31</volume><issue>38</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Layered AxCoO2 materials built by stacking layers of CoO2 slabs and inserting alkali ions in between them have shown a promising activity of oxygen evolution reaction (OER) due to their active edge sites. However, the large basal plane areas of the CoO2 slabs show too strong adsorption energy to the reaction intermediates, which is unfavorable for the release of O2. Here, a simple cation‐exchange strategy based on Fe3+ and alkali ions is proposed to simultaneously activate both the basal plane and edge sites of AxCoO2 for the OER. X‐ray absorption spectroscopy has revealed that the Fe3+ ions deposit both on the surface and edge sites of the CoO2 slabs and enter the interlayer. The cation‐exchanged AxCoO2 electrodes show a boosted activity compared to their pristine and conventional Fe‐doped AxCoO2 counterparts. This phenomenon is mainly ascribed to the abundant edge‐sharing Co–Fe motifs at the edge sites and the charge redistribution in the basal plane sites induced by the insertion of Fe3+ ions. This work provides a novel method to fully exploit layer‐structured materials for efficient energy conversion.
A cation‐exchange strategy is proposed to simultaneously activate both the basal plane and edge sites of layered cobalt materials for the oxygen evolution reaction (OER). The as‐prepared materials show better OER activity than the pristine and conventional‐doped materials. This work provides a facile and controllable way to boost the OER performance of the layer structured materials.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202103569</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0322-095X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2021-09, Vol.31 (38), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2572906946 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Basal plane cation exchange Cation exchanging charge redistribution Cobalt oxides Crystals Energy conversion Ferric ions Interlayers layered cobalt oxide Materials science Metal ions Oxidation oxygen evolution reaction Oxygen evolution reactions water splitting |
title | Activating Both Basal Plane and Edge Sites of Layered Cobalt Oxides for Boosted Water Oxidation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A30%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activating%20Both%20Basal%20Plane%20and%20Edge%20Sites%20of%20Layered%20Cobalt%20Oxides%20for%20Boosted%20Water%20Oxidation&rft.jtitle=Advanced%20functional%20materials&rft.au=Li,%20Yu&rft.date=2021-09-01&rft.volume=31&rft.issue=38&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202103569&rft_dat=%3Cproquest_cross%3E2572906946%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572906946&rft_id=info:pmid/&rfr_iscdi=true |