Activating Both Basal Plane and Edge Sites of Layered Cobalt Oxides for Boosted Water Oxidation

Layered AxCoO2 materials built by stacking layers of CoO2 slabs and inserting alkali ions in between them have shown a promising activity of oxygen evolution reaction (OER) due to their active edge sites. However, the large basal plane areas of the CoO2 slabs show too strong adsorption energy to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-09, Vol.31 (38), p.n/a
Hauptverfasser: Li, Yu, Chen, Gao, Zhu, Yanping, Hu, Zhiwei, Chan, Ting‐Shan, She, Sixuan, Dai, Jie, Zhou, Wei, Shao, Zongping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 38
container_start_page
container_title Advanced functional materials
container_volume 31
creator Li, Yu
Chen, Gao
Zhu, Yanping
Hu, Zhiwei
Chan, Ting‐Shan
She, Sixuan
Dai, Jie
Zhou, Wei
Shao, Zongping
description Layered AxCoO2 materials built by stacking layers of CoO2 slabs and inserting alkali ions in between them have shown a promising activity of oxygen evolution reaction (OER) due to their active edge sites. However, the large basal plane areas of the CoO2 slabs show too strong adsorption energy to the reaction intermediates, which is unfavorable for the release of O2. Here, a simple cation‐exchange strategy based on Fe3+ and alkali ions is proposed to simultaneously activate both the basal plane and edge sites of AxCoO2 for the OER. X‐ray absorption spectroscopy has revealed that the Fe3+ ions deposit both on the surface and edge sites of the CoO2 slabs and enter the interlayer. The cation‐exchanged AxCoO2 electrodes show a boosted activity compared to their pristine and conventional Fe‐doped AxCoO2 counterparts. This phenomenon is mainly ascribed to the abundant edge‐sharing Co–Fe motifs at the edge sites and the charge redistribution in the basal plane sites induced by the insertion of Fe3+ ions. This work provides a novel method to fully exploit layer‐structured materials for efficient energy conversion. A cation‐exchange strategy is proposed to simultaneously activate both the basal plane and edge sites of layered cobalt materials for the oxygen evolution reaction (OER). The as‐prepared materials show better OER activity than the pristine and conventional‐doped materials. This work provides a facile and controllable way to boost the OER performance of the layer structured materials.
doi_str_mv 10.1002/adfm.202103569
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2572906946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572906946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3179-4ca82a7d724af23fffdc4aa74ee000e4cd76cc85957da3426e51351f3b919a5d3</originalsourceid><addsrcrecordid>eNqFkM1PAjEUxBujiYhePTfxvNiP3S09AoKaYDBRo7fm0Q9csmyxLSr_vYsYPXp6k8z85iWD0DklPUoIuwTjVj1GGCW8KOUB6tCSlhknrH_4q-nLMTqJcUkIFYLnHaQGOlXvkKpmgYc-veIhRKjxfQ2NxdAYPDYLix-qZCP2Dk9ha4M1eOTnUCc8-6xMazgfWtjH1DrPkGz4NtpS35yiIwd1tGc_t4ueJuPH0U02nV3fjgbTTHMqZJZr6DMQRrAcHOPOOaNzAJFbSwixuTai1LpfyEIY4DkrbUF5QR2fSyqhMLyLLva96-DfNjYmtfSb0LQvFSsEk6SUedmmevuUDj7GYJ1ah2oFYasoUbsR1W5E9TtiC8g98FHVdvtPWg2uJnd_7BdOOHWL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572906946</pqid></control><display><type>article</type><title>Activating Both Basal Plane and Edge Sites of Layered Cobalt Oxides for Boosted Water Oxidation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Yu ; Chen, Gao ; Zhu, Yanping ; Hu, Zhiwei ; Chan, Ting‐Shan ; She, Sixuan ; Dai, Jie ; Zhou, Wei ; Shao, Zongping</creator><creatorcontrib>Li, Yu ; Chen, Gao ; Zhu, Yanping ; Hu, Zhiwei ; Chan, Ting‐Shan ; She, Sixuan ; Dai, Jie ; Zhou, Wei ; Shao, Zongping</creatorcontrib><description>Layered AxCoO2 materials built by stacking layers of CoO2 slabs and inserting alkali ions in between them have shown a promising activity of oxygen evolution reaction (OER) due to their active edge sites. However, the large basal plane areas of the CoO2 slabs show too strong adsorption energy to the reaction intermediates, which is unfavorable for the release of O2. Here, a simple cation‐exchange strategy based on Fe3+ and alkali ions is proposed to simultaneously activate both the basal plane and edge sites of AxCoO2 for the OER. X‐ray absorption spectroscopy has revealed that the Fe3+ ions deposit both on the surface and edge sites of the CoO2 slabs and enter the interlayer. The cation‐exchanged AxCoO2 electrodes show a boosted activity compared to their pristine and conventional Fe‐doped AxCoO2 counterparts. This phenomenon is mainly ascribed to the abundant edge‐sharing Co–Fe motifs at the edge sites and the charge redistribution in the basal plane sites induced by the insertion of Fe3+ ions. This work provides a novel method to fully exploit layer‐structured materials for efficient energy conversion. A cation‐exchange strategy is proposed to simultaneously activate both the basal plane and edge sites of layered cobalt materials for the oxygen evolution reaction (OER). The as‐prepared materials show better OER activity than the pristine and conventional‐doped materials. This work provides a facile and controllable way to boost the OER performance of the layer structured materials.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202103569</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Basal plane ; cation exchange ; Cation exchanging ; charge redistribution ; Cobalt oxides ; Crystals ; Energy conversion ; Ferric ions ; Interlayers ; layered cobalt oxide ; Materials science ; Metal ions ; Oxidation ; oxygen evolution reaction ; Oxygen evolution reactions ; water splitting</subject><ispartof>Advanced functional materials, 2021-09, Vol.31 (38), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3179-4ca82a7d724af23fffdc4aa74ee000e4cd76cc85957da3426e51351f3b919a5d3</citedby><cites>FETCH-LOGICAL-c3179-4ca82a7d724af23fffdc4aa74ee000e4cd76cc85957da3426e51351f3b919a5d3</cites><orcidid>0000-0003-0322-095X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202103569$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202103569$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Chen, Gao</creatorcontrib><creatorcontrib>Zhu, Yanping</creatorcontrib><creatorcontrib>Hu, Zhiwei</creatorcontrib><creatorcontrib>Chan, Ting‐Shan</creatorcontrib><creatorcontrib>She, Sixuan</creatorcontrib><creatorcontrib>Dai, Jie</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Shao, Zongping</creatorcontrib><title>Activating Both Basal Plane and Edge Sites of Layered Cobalt Oxides for Boosted Water Oxidation</title><title>Advanced functional materials</title><description>Layered AxCoO2 materials built by stacking layers of CoO2 slabs and inserting alkali ions in between them have shown a promising activity of oxygen evolution reaction (OER) due to their active edge sites. However, the large basal plane areas of the CoO2 slabs show too strong adsorption energy to the reaction intermediates, which is unfavorable for the release of O2. Here, a simple cation‐exchange strategy based on Fe3+ and alkali ions is proposed to simultaneously activate both the basal plane and edge sites of AxCoO2 for the OER. X‐ray absorption spectroscopy has revealed that the Fe3+ ions deposit both on the surface and edge sites of the CoO2 slabs and enter the interlayer. The cation‐exchanged AxCoO2 electrodes show a boosted activity compared to their pristine and conventional Fe‐doped AxCoO2 counterparts. This phenomenon is mainly ascribed to the abundant edge‐sharing Co–Fe motifs at the edge sites and the charge redistribution in the basal plane sites induced by the insertion of Fe3+ ions. This work provides a novel method to fully exploit layer‐structured materials for efficient energy conversion. A cation‐exchange strategy is proposed to simultaneously activate both the basal plane and edge sites of layered cobalt materials for the oxygen evolution reaction (OER). The as‐prepared materials show better OER activity than the pristine and conventional‐doped materials. This work provides a facile and controllable way to boost the OER performance of the layer structured materials.</description><subject>Basal plane</subject><subject>cation exchange</subject><subject>Cation exchanging</subject><subject>charge redistribution</subject><subject>Cobalt oxides</subject><subject>Crystals</subject><subject>Energy conversion</subject><subject>Ferric ions</subject><subject>Interlayers</subject><subject>layered cobalt oxide</subject><subject>Materials science</subject><subject>Metal ions</subject><subject>Oxidation</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>water splitting</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1PAjEUxBujiYhePTfxvNiP3S09AoKaYDBRo7fm0Q9csmyxLSr_vYsYPXp6k8z85iWD0DklPUoIuwTjVj1GGCW8KOUB6tCSlhknrH_4q-nLMTqJcUkIFYLnHaQGOlXvkKpmgYc-veIhRKjxfQ2NxdAYPDYLix-qZCP2Dk9ha4M1eOTnUCc8-6xMazgfWtjH1DrPkGz4NtpS35yiIwd1tGc_t4ueJuPH0U02nV3fjgbTTHMqZJZr6DMQRrAcHOPOOaNzAJFbSwixuTai1LpfyEIY4DkrbUF5QR2fSyqhMLyLLva96-DfNjYmtfSb0LQvFSsEk6SUedmmevuUDj7GYJ1ah2oFYasoUbsR1W5E9TtiC8g98FHVdvtPWg2uJnd_7BdOOHWL</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Li, Yu</creator><creator>Chen, Gao</creator><creator>Zhu, Yanping</creator><creator>Hu, Zhiwei</creator><creator>Chan, Ting‐Shan</creator><creator>She, Sixuan</creator><creator>Dai, Jie</creator><creator>Zhou, Wei</creator><creator>Shao, Zongping</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0322-095X</orcidid></search><sort><creationdate>20210901</creationdate><title>Activating Both Basal Plane and Edge Sites of Layered Cobalt Oxides for Boosted Water Oxidation</title><author>Li, Yu ; Chen, Gao ; Zhu, Yanping ; Hu, Zhiwei ; Chan, Ting‐Shan ; She, Sixuan ; Dai, Jie ; Zhou, Wei ; Shao, Zongping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3179-4ca82a7d724af23fffdc4aa74ee000e4cd76cc85957da3426e51351f3b919a5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Basal plane</topic><topic>cation exchange</topic><topic>Cation exchanging</topic><topic>charge redistribution</topic><topic>Cobalt oxides</topic><topic>Crystals</topic><topic>Energy conversion</topic><topic>Ferric ions</topic><topic>Interlayers</topic><topic>layered cobalt oxide</topic><topic>Materials science</topic><topic>Metal ions</topic><topic>Oxidation</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Chen, Gao</creatorcontrib><creatorcontrib>Zhu, Yanping</creatorcontrib><creatorcontrib>Hu, Zhiwei</creatorcontrib><creatorcontrib>Chan, Ting‐Shan</creatorcontrib><creatorcontrib>She, Sixuan</creatorcontrib><creatorcontrib>Dai, Jie</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Shao, Zongping</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yu</au><au>Chen, Gao</au><au>Zhu, Yanping</au><au>Hu, Zhiwei</au><au>Chan, Ting‐Shan</au><au>She, Sixuan</au><au>Dai, Jie</au><au>Zhou, Wei</au><au>Shao, Zongping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activating Both Basal Plane and Edge Sites of Layered Cobalt Oxides for Boosted Water Oxidation</atitle><jtitle>Advanced functional materials</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>31</volume><issue>38</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Layered AxCoO2 materials built by stacking layers of CoO2 slabs and inserting alkali ions in between them have shown a promising activity of oxygen evolution reaction (OER) due to their active edge sites. However, the large basal plane areas of the CoO2 slabs show too strong adsorption energy to the reaction intermediates, which is unfavorable for the release of O2. Here, a simple cation‐exchange strategy based on Fe3+ and alkali ions is proposed to simultaneously activate both the basal plane and edge sites of AxCoO2 for the OER. X‐ray absorption spectroscopy has revealed that the Fe3+ ions deposit both on the surface and edge sites of the CoO2 slabs and enter the interlayer. The cation‐exchanged AxCoO2 electrodes show a boosted activity compared to their pristine and conventional Fe‐doped AxCoO2 counterparts. This phenomenon is mainly ascribed to the abundant edge‐sharing Co–Fe motifs at the edge sites and the charge redistribution in the basal plane sites induced by the insertion of Fe3+ ions. This work provides a novel method to fully exploit layer‐structured materials for efficient energy conversion. A cation‐exchange strategy is proposed to simultaneously activate both the basal plane and edge sites of layered cobalt materials for the oxygen evolution reaction (OER). The as‐prepared materials show better OER activity than the pristine and conventional‐doped materials. This work provides a facile and controllable way to boost the OER performance of the layer structured materials.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202103569</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0322-095X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-09, Vol.31 (38), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2572906946
source Wiley Online Library Journals Frontfile Complete
subjects Basal plane
cation exchange
Cation exchanging
charge redistribution
Cobalt oxides
Crystals
Energy conversion
Ferric ions
Interlayers
layered cobalt oxide
Materials science
Metal ions
Oxidation
oxygen evolution reaction
Oxygen evolution reactions
water splitting
title Activating Both Basal Plane and Edge Sites of Layered Cobalt Oxides for Boosted Water Oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A30%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activating%20Both%20Basal%20Plane%20and%20Edge%20Sites%20of%20Layered%20Cobalt%20Oxides%20for%20Boosted%20Water%20Oxidation&rft.jtitle=Advanced%20functional%20materials&rft.au=Li,%20Yu&rft.date=2021-09-01&rft.volume=31&rft.issue=38&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202103569&rft_dat=%3Cproquest_cross%3E2572906946%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572906946&rft_id=info:pmid/&rfr_iscdi=true