Tuning the Electrolyte Solvation Structure to Suppress Cathode Dissolution, Water Reactivity, and Zn Dendrite Growth in Zinc‐Ion Batteries

The cycle life of aqueous zinc‐ion batteries (ZIBs) is limited by the notable challenges of cathode dissolution, water reactivity, and zinc dendrites. Here, it is demonstrated that by tuning the electrolyte solvation structure, the issues for both the electrodes and the electrolyte can be addressed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-09, Vol.31 (38), p.n/a
Hauptverfasser: Liu, Sailin, Mao, Jianfeng, Pang, Wei Kong, Vongsvivut, Jitraporn, Zeng, Xiaohui, Thomsen, Lars, Wang, Yanyan, Liu, Jianwen, Li, Dan, Guo, Zaiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 38
container_start_page
container_title Advanced functional materials
container_volume 31
creator Liu, Sailin
Mao, Jianfeng
Pang, Wei Kong
Vongsvivut, Jitraporn
Zeng, Xiaohui
Thomsen, Lars
Wang, Yanyan
Liu, Jianwen
Li, Dan
Guo, Zaiping
description The cycle life of aqueous zinc‐ion batteries (ZIBs) is limited by the notable challenges of cathode dissolution, water reactivity, and zinc dendrites. Here, it is demonstrated that by tuning the electrolyte solvation structure, the issues for both the electrodes and the electrolyte can be addressed simultaneously. Specifically, a fire‐retardant triethyl phosphate (TEP) is demonstrated as a cosolvent with strong solvating ability in a nonaqueous/aqueous hybrid electrolyte. The TEP features a higher donor number (26 kcal mol−1) than H2O (18 kcal mol−1), preferring to form a TEP occupied inner solvation sheath around Zn2+ and strong hydrogen bonding with H2O. The TEP coordinated electrolyte structure can inhibit the reactivity of H2O with V2O5 and leads to a robust polymeric‐inorganic interphase (poly‐ZnP2O6 and ZnF2) on zinc anode effectively preventing the dendrite growth and parasitic water reaction. With such an optimized electrolyte, the Zn/Cu cells perform high average Coulombic efficiency of 99.5%, and the full cell with a low capacity ratio of Zn:V2O5 (2:1) and lean electrolyte (11.5 g Ah−1) delivers a reversible capacity of 250 mAh g−1 for over 1000 cycles at 5 A g−1. This study highlights the promise of a successful electrolyte regulation strategy for the development of high‐performance and practical ZIBs. The Zn(Otf)2‐TEP‐H2O electrolyte has a significant effect on reducing the water activity and inhibiting the V‐dissolution, which helps the V2O5 material to support a reversible reaction mechanism during discharging/charging processes. This electrolyte is also found to protect zinc metal from serious depletion by generating a novel polymeric‐inorganic solid‐electrolyte interphase, which could block electron transport and enable fast Zn2+ diffusion.
doi_str_mv 10.1002/adfm.202104281
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2572901860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572901860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3831-f875e95948ef4e6b333d844aa6967ea530b1d1cf65d371bbd504208dc88d69d53</originalsourceid><addsrcrecordid>eNqFkM1OAjEUhSdGExHdum7iFrCdzk9nifxJgjERjIbNpEzvSMnQjm0Hws4HcOEz-iQOweDS1b2L7zsnOZ53TXCHYOzfcpGvOz72CQ58Rk68BolI1KbYZ6fHn7yeexfWrjAmcUyDhvc5q5RUb8gtAQ0KyJzRxc4Bmupiw53UCk2dqTJXGUBOo2lVlgasRT3ulloA6ktrdVHtyRZ64Q4MegKeObmRbtdCXAk0V6gPShhZx46M3rolkgrNpcq-P77GdcMdd7UnwV56ZzkvLFz93qb3PBzMevftyeNo3OtO2hlllLRzFoeQhEnAIA8gWlBKBQsCzqMkioGHFC-IIFkehYLGZLEQYb0IZiJjTESJCGnTuznklka_V2BdutKVUXVl6oexn2DCIlxTnQOVGW2tgTwtjVxzs0sJTveLp_vF0-PitZAchK0sYPcPnXb7w4c_9wfQMofD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572901860</pqid></control><display><type>article</type><title>Tuning the Electrolyte Solvation Structure to Suppress Cathode Dissolution, Water Reactivity, and Zn Dendrite Growth in Zinc‐Ion Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Sailin ; Mao, Jianfeng ; Pang, Wei Kong ; Vongsvivut, Jitraporn ; Zeng, Xiaohui ; Thomsen, Lars ; Wang, Yanyan ; Liu, Jianwen ; Li, Dan ; Guo, Zaiping</creator><creatorcontrib>Liu, Sailin ; Mao, Jianfeng ; Pang, Wei Kong ; Vongsvivut, Jitraporn ; Zeng, Xiaohui ; Thomsen, Lars ; Wang, Yanyan ; Liu, Jianwen ; Li, Dan ; Guo, Zaiping</creatorcontrib><description>The cycle life of aqueous zinc‐ion batteries (ZIBs) is limited by the notable challenges of cathode dissolution, water reactivity, and zinc dendrites. Here, it is demonstrated that by tuning the electrolyte solvation structure, the issues for both the electrodes and the electrolyte can be addressed simultaneously. Specifically, a fire‐retardant triethyl phosphate (TEP) is demonstrated as a cosolvent with strong solvating ability in a nonaqueous/aqueous hybrid electrolyte. The TEP features a higher donor number (26 kcal mol−1) than H2O (18 kcal mol−1), preferring to form a TEP occupied inner solvation sheath around Zn2+ and strong hydrogen bonding with H2O. The TEP coordinated electrolyte structure can inhibit the reactivity of H2O with V2O5 and leads to a robust polymeric‐inorganic interphase (poly‐ZnP2O6 and ZnF2) on zinc anode effectively preventing the dendrite growth and parasitic water reaction. With such an optimized electrolyte, the Zn/Cu cells perform high average Coulombic efficiency of 99.5%, and the full cell with a low capacity ratio of Zn:V2O5 (2:1) and lean electrolyte (11.5 g Ah−1) delivers a reversible capacity of 250 mAh g−1 for over 1000 cycles at 5 A g−1. This study highlights the promise of a successful electrolyte regulation strategy for the development of high‐performance and practical ZIBs. The Zn(Otf)2‐TEP‐H2O electrolyte has a significant effect on reducing the water activity and inhibiting the V‐dissolution, which helps the V2O5 material to support a reversible reaction mechanism during discharging/charging processes. This electrolyte is also found to protect zinc metal from serious depletion by generating a novel polymeric‐inorganic solid‐electrolyte interphase, which could block electron transport and enable fast Zn2+ diffusion.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202104281</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Anode effect ; Bonding strength ; cathode dissolution ; Cathodes ; Cathodic dissolution ; Dendritic structure ; Dissolution ; Electrolytes ; Electrolytic cells ; Hydrogen bonding ; Materials science ; nonaqueous/aqueous hybrid electrolytes ; Reactivity ; Sheaths ; Solvation ; triethyl phosphate ; Tuning ; vanadium oxides ; Vanadium pentoxide ; Zinc fluorides ; zinc‐ion batteries</subject><ispartof>Advanced functional materials, 2021-09, Vol.31 (38), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3831-f875e95948ef4e6b333d844aa6967ea530b1d1cf65d371bbd504208dc88d69d53</citedby><cites>FETCH-LOGICAL-c3831-f875e95948ef4e6b333d844aa6967ea530b1d1cf65d371bbd504208dc88d69d53</cites><orcidid>0000-0003-3464-5301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202104281$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202104281$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Liu, Sailin</creatorcontrib><creatorcontrib>Mao, Jianfeng</creatorcontrib><creatorcontrib>Pang, Wei Kong</creatorcontrib><creatorcontrib>Vongsvivut, Jitraporn</creatorcontrib><creatorcontrib>Zeng, Xiaohui</creatorcontrib><creatorcontrib>Thomsen, Lars</creatorcontrib><creatorcontrib>Wang, Yanyan</creatorcontrib><creatorcontrib>Liu, Jianwen</creatorcontrib><creatorcontrib>Li, Dan</creatorcontrib><creatorcontrib>Guo, Zaiping</creatorcontrib><title>Tuning the Electrolyte Solvation Structure to Suppress Cathode Dissolution, Water Reactivity, and Zn Dendrite Growth in Zinc‐Ion Batteries</title><title>Advanced functional materials</title><description>The cycle life of aqueous zinc‐ion batteries (ZIBs) is limited by the notable challenges of cathode dissolution, water reactivity, and zinc dendrites. Here, it is demonstrated that by tuning the electrolyte solvation structure, the issues for both the electrodes and the electrolyte can be addressed simultaneously. Specifically, a fire‐retardant triethyl phosphate (TEP) is demonstrated as a cosolvent with strong solvating ability in a nonaqueous/aqueous hybrid electrolyte. The TEP features a higher donor number (26 kcal mol−1) than H2O (18 kcal mol−1), preferring to form a TEP occupied inner solvation sheath around Zn2+ and strong hydrogen bonding with H2O. The TEP coordinated electrolyte structure can inhibit the reactivity of H2O with V2O5 and leads to a robust polymeric‐inorganic interphase (poly‐ZnP2O6 and ZnF2) on zinc anode effectively preventing the dendrite growth and parasitic water reaction. With such an optimized electrolyte, the Zn/Cu cells perform high average Coulombic efficiency of 99.5%, and the full cell with a low capacity ratio of Zn:V2O5 (2:1) and lean electrolyte (11.5 g Ah−1) delivers a reversible capacity of 250 mAh g−1 for over 1000 cycles at 5 A g−1. This study highlights the promise of a successful electrolyte regulation strategy for the development of high‐performance and practical ZIBs. The Zn(Otf)2‐TEP‐H2O electrolyte has a significant effect on reducing the water activity and inhibiting the V‐dissolution, which helps the V2O5 material to support a reversible reaction mechanism during discharging/charging processes. This electrolyte is also found to protect zinc metal from serious depletion by generating a novel polymeric‐inorganic solid‐electrolyte interphase, which could block electron transport and enable fast Zn2+ diffusion.</description><subject>Anode effect</subject><subject>Bonding strength</subject><subject>cathode dissolution</subject><subject>Cathodes</subject><subject>Cathodic dissolution</subject><subject>Dendritic structure</subject><subject>Dissolution</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Hydrogen bonding</subject><subject>Materials science</subject><subject>nonaqueous/aqueous hybrid electrolytes</subject><subject>Reactivity</subject><subject>Sheaths</subject><subject>Solvation</subject><subject>triethyl phosphate</subject><subject>Tuning</subject><subject>vanadium oxides</subject><subject>Vanadium pentoxide</subject><subject>Zinc fluorides</subject><subject>zinc‐ion batteries</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OAjEUhSdGExHdum7iFrCdzk9nifxJgjERjIbNpEzvSMnQjm0Hws4HcOEz-iQOweDS1b2L7zsnOZ53TXCHYOzfcpGvOz72CQ58Rk68BolI1KbYZ6fHn7yeexfWrjAmcUyDhvc5q5RUb8gtAQ0KyJzRxc4Bmupiw53UCk2dqTJXGUBOo2lVlgasRT3ulloA6ktrdVHtyRZ64Q4MegKeObmRbtdCXAk0V6gPShhZx46M3rolkgrNpcq-P77GdcMdd7UnwV56ZzkvLFz93qb3PBzMevftyeNo3OtO2hlllLRzFoeQhEnAIA8gWlBKBQsCzqMkioGHFC-IIFkehYLGZLEQYb0IZiJjTESJCGnTuznklka_V2BdutKVUXVl6oexn2DCIlxTnQOVGW2tgTwtjVxzs0sJTveLp_vF0-PitZAchK0sYPcPnXb7w4c_9wfQMofD</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Liu, Sailin</creator><creator>Mao, Jianfeng</creator><creator>Pang, Wei Kong</creator><creator>Vongsvivut, Jitraporn</creator><creator>Zeng, Xiaohui</creator><creator>Thomsen, Lars</creator><creator>Wang, Yanyan</creator><creator>Liu, Jianwen</creator><creator>Li, Dan</creator><creator>Guo, Zaiping</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3464-5301</orcidid></search><sort><creationdate>20210901</creationdate><title>Tuning the Electrolyte Solvation Structure to Suppress Cathode Dissolution, Water Reactivity, and Zn Dendrite Growth in Zinc‐Ion Batteries</title><author>Liu, Sailin ; Mao, Jianfeng ; Pang, Wei Kong ; Vongsvivut, Jitraporn ; Zeng, Xiaohui ; Thomsen, Lars ; Wang, Yanyan ; Liu, Jianwen ; Li, Dan ; Guo, Zaiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3831-f875e95948ef4e6b333d844aa6967ea530b1d1cf65d371bbd504208dc88d69d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anode effect</topic><topic>Bonding strength</topic><topic>cathode dissolution</topic><topic>Cathodes</topic><topic>Cathodic dissolution</topic><topic>Dendritic structure</topic><topic>Dissolution</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Hydrogen bonding</topic><topic>Materials science</topic><topic>nonaqueous/aqueous hybrid electrolytes</topic><topic>Reactivity</topic><topic>Sheaths</topic><topic>Solvation</topic><topic>triethyl phosphate</topic><topic>Tuning</topic><topic>vanadium oxides</topic><topic>Vanadium pentoxide</topic><topic>Zinc fluorides</topic><topic>zinc‐ion batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Sailin</creatorcontrib><creatorcontrib>Mao, Jianfeng</creatorcontrib><creatorcontrib>Pang, Wei Kong</creatorcontrib><creatorcontrib>Vongsvivut, Jitraporn</creatorcontrib><creatorcontrib>Zeng, Xiaohui</creatorcontrib><creatorcontrib>Thomsen, Lars</creatorcontrib><creatorcontrib>Wang, Yanyan</creatorcontrib><creatorcontrib>Liu, Jianwen</creatorcontrib><creatorcontrib>Li, Dan</creatorcontrib><creatorcontrib>Guo, Zaiping</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Sailin</au><au>Mao, Jianfeng</au><au>Pang, Wei Kong</au><au>Vongsvivut, Jitraporn</au><au>Zeng, Xiaohui</au><au>Thomsen, Lars</au><au>Wang, Yanyan</au><au>Liu, Jianwen</au><au>Li, Dan</au><au>Guo, Zaiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning the Electrolyte Solvation Structure to Suppress Cathode Dissolution, Water Reactivity, and Zn Dendrite Growth in Zinc‐Ion Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>31</volume><issue>38</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The cycle life of aqueous zinc‐ion batteries (ZIBs) is limited by the notable challenges of cathode dissolution, water reactivity, and zinc dendrites. Here, it is demonstrated that by tuning the electrolyte solvation structure, the issues for both the electrodes and the electrolyte can be addressed simultaneously. Specifically, a fire‐retardant triethyl phosphate (TEP) is demonstrated as a cosolvent with strong solvating ability in a nonaqueous/aqueous hybrid electrolyte. The TEP features a higher donor number (26 kcal mol−1) than H2O (18 kcal mol−1), preferring to form a TEP occupied inner solvation sheath around Zn2+ and strong hydrogen bonding with H2O. The TEP coordinated electrolyte structure can inhibit the reactivity of H2O with V2O5 and leads to a robust polymeric‐inorganic interphase (poly‐ZnP2O6 and ZnF2) on zinc anode effectively preventing the dendrite growth and parasitic water reaction. With such an optimized electrolyte, the Zn/Cu cells perform high average Coulombic efficiency of 99.5%, and the full cell with a low capacity ratio of Zn:V2O5 (2:1) and lean electrolyte (11.5 g Ah−1) delivers a reversible capacity of 250 mAh g−1 for over 1000 cycles at 5 A g−1. This study highlights the promise of a successful electrolyte regulation strategy for the development of high‐performance and practical ZIBs. The Zn(Otf)2‐TEP‐H2O electrolyte has a significant effect on reducing the water activity and inhibiting the V‐dissolution, which helps the V2O5 material to support a reversible reaction mechanism during discharging/charging processes. This electrolyte is also found to protect zinc metal from serious depletion by generating a novel polymeric‐inorganic solid‐electrolyte interphase, which could block electron transport and enable fast Zn2+ diffusion.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202104281</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3464-5301</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-09, Vol.31 (38), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2572901860
source Wiley Online Library Journals Frontfile Complete
subjects Anode effect
Bonding strength
cathode dissolution
Cathodes
Cathodic dissolution
Dendritic structure
Dissolution
Electrolytes
Electrolytic cells
Hydrogen bonding
Materials science
nonaqueous/aqueous hybrid electrolytes
Reactivity
Sheaths
Solvation
triethyl phosphate
Tuning
vanadium oxides
Vanadium pentoxide
Zinc fluorides
zinc‐ion batteries
title Tuning the Electrolyte Solvation Structure to Suppress Cathode Dissolution, Water Reactivity, and Zn Dendrite Growth in Zinc‐Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A04%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20the%20Electrolyte%20Solvation%20Structure%20to%20Suppress%20Cathode%20Dissolution,%20Water%20Reactivity,%20and%20Zn%20Dendrite%20Growth%20in%20Zinc%E2%80%90Ion%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Liu,%20Sailin&rft.date=2021-09-01&rft.volume=31&rft.issue=38&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202104281&rft_dat=%3Cproquest_cross%3E2572901860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572901860&rft_id=info:pmid/&rfr_iscdi=true