On the comparison of Shapley values for variance and standard deviation games

Motivated by the problem of variance allocation for the sum of dependent random variables, Colini-Baldeschi, Scarsini and Vaccari (2018) recently introduced Shapley values for variance and standard deviation games. These Shapley values constitute a criterion satisfying nice properties useful for all...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2021-09, Vol.58 (3), p.609-620
Hauptverfasser: Galeotti, Marcello, Rabitti, Giovanni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 620
container_issue 3
container_start_page 609
container_title Journal of applied probability
container_volume 58
creator Galeotti, Marcello
Rabitti, Giovanni
description Motivated by the problem of variance allocation for the sum of dependent random variables, Colini-Baldeschi, Scarsini and Vaccari (2018) recently introduced Shapley values for variance and standard deviation games. These Shapley values constitute a criterion satisfying nice properties useful for allocating the variance and the standard deviation of the sum of dependent random variables. However, since Shapley values are in general computationally demanding, Colini-Baldeschi, Scarsini and Vaccari also formulated a conjecture about the relation of the Shapley values of two games, which they proved for the case of two dependent random variables. In this work we prove that their conjecture holds true in the case of an arbitrary number of independent random variables but, at the same time, we provide counterexamples to the conjecture for the case of three dependent random variables.
doi_str_mv 10.1017/jpr.2020.106
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2572879960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jpr_2020_106</cupid><jstor_id>48656627</jstor_id><sourcerecordid>48656627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-3b252eedb741a2b688949cf7581f04ddbaf451251e2ecc5aadf2834858846a933</originalsourceid><addsrcrecordid>eNptkMtLAzEQxoMoWKs3r0LAq1uTbF57lOILKj2o52V2k7S7dDdrsi30vzelohcv82B-883wIXRNyYwSqu7bIcwYYYdOnqAJ5Upkkih2iiaEMJoVKZ6jixhbQigXhZqgt2WPx7XFte8GCE30PfYOv69h2Ng93sFmayN2PqQyNNDXFkNvcBxThGCwsbsGxiZtraCz8RKdOdhEe_WTp-jz6fFj_pItls-v84dFVueMj1leMcGsNZXiFFgltS54UTslNHWEG1OB44IyQS2zdS0AjGM651pozSUUeT5Ft0fdIfiv9OFYtn4b-nSyZEIxrYpCkkTdHak6-BiDdeUQmg7CvqSkPBhWJsPKg2Gpkwm_OeJtHH34ZbmWQkqm0nz2IwddFRqzsn9X_xX8BrMrdrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572879960</pqid></control><display><type>article</type><title>On the comparison of Shapley values for variance and standard deviation games</title><source>Cambridge University Press Journals Complete</source><creator>Galeotti, Marcello ; Rabitti, Giovanni</creator><creatorcontrib>Galeotti, Marcello ; Rabitti, Giovanni</creatorcontrib><description>Motivated by the problem of variance allocation for the sum of dependent random variables, Colini-Baldeschi, Scarsini and Vaccari (2018) recently introduced Shapley values for variance and standard deviation games. These Shapley values constitute a criterion satisfying nice properties useful for allocating the variance and the standard deviation of the sum of dependent random variables. However, since Shapley values are in general computationally demanding, Colini-Baldeschi, Scarsini and Vaccari also formulated a conjecture about the relation of the Shapley values of two games, which they proved for the case of two dependent random variables. In this work we prove that their conjecture holds true in the case of an arbitrary number of independent random variables but, at the same time, we provide counterexamples to the conjecture for the case of three dependent random variables.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1017/jpr.2020.106</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Dependent variables ; Game theory ; Games ; Independent variables ; Inequality ; Original Article ; Queuing theory ; Random variables ; Research Papers ; Standard deviation ; Variance</subject><ispartof>Journal of applied probability, 2021-09, Vol.58 (3), p.609-620</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press on behalf of Applied Probability Trust</rights><rights>The Author(s), 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-3b252eedb741a2b688949cf7581f04ddbaf451251e2ecc5aadf2834858846a933</citedby><cites>FETCH-LOGICAL-c324t-3b252eedb741a2b688949cf7581f04ddbaf451251e2ecc5aadf2834858846a933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0021900220001060/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Galeotti, Marcello</creatorcontrib><creatorcontrib>Rabitti, Giovanni</creatorcontrib><title>On the comparison of Shapley values for variance and standard deviation games</title><title>Journal of applied probability</title><addtitle>J. Appl. Probab</addtitle><description>Motivated by the problem of variance allocation for the sum of dependent random variables, Colini-Baldeschi, Scarsini and Vaccari (2018) recently introduced Shapley values for variance and standard deviation games. These Shapley values constitute a criterion satisfying nice properties useful for allocating the variance and the standard deviation of the sum of dependent random variables. However, since Shapley values are in general computationally demanding, Colini-Baldeschi, Scarsini and Vaccari also formulated a conjecture about the relation of the Shapley values of two games, which they proved for the case of two dependent random variables. In this work we prove that their conjecture holds true in the case of an arbitrary number of independent random variables but, at the same time, we provide counterexamples to the conjecture for the case of three dependent random variables.</description><subject>Dependent variables</subject><subject>Game theory</subject><subject>Games</subject><subject>Independent variables</subject><subject>Inequality</subject><subject>Original Article</subject><subject>Queuing theory</subject><subject>Random variables</subject><subject>Research Papers</subject><subject>Standard deviation</subject><subject>Variance</subject><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkMtLAzEQxoMoWKs3r0LAq1uTbF57lOILKj2o52V2k7S7dDdrsi30vzelohcv82B-883wIXRNyYwSqu7bIcwYYYdOnqAJ5Upkkih2iiaEMJoVKZ6jixhbQigXhZqgt2WPx7XFte8GCE30PfYOv69h2Ng93sFmayN2PqQyNNDXFkNvcBxThGCwsbsGxiZtraCz8RKdOdhEe_WTp-jz6fFj_pItls-v84dFVueMj1leMcGsNZXiFFgltS54UTslNHWEG1OB44IyQS2zdS0AjGM651pozSUUeT5Ft0fdIfiv9OFYtn4b-nSyZEIxrYpCkkTdHak6-BiDdeUQmg7CvqSkPBhWJsPKg2Gpkwm_OeJtHH34ZbmWQkqm0nz2IwddFRqzsn9X_xX8BrMrdrA</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Galeotti, Marcello</creator><creator>Rabitti, Giovanni</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20210901</creationdate><title>On the comparison of Shapley values for variance and standard deviation games</title><author>Galeotti, Marcello ; Rabitti, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-3b252eedb741a2b688949cf7581f04ddbaf451251e2ecc5aadf2834858846a933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Dependent variables</topic><topic>Game theory</topic><topic>Games</topic><topic>Independent variables</topic><topic>Inequality</topic><topic>Original Article</topic><topic>Queuing theory</topic><topic>Random variables</topic><topic>Research Papers</topic><topic>Standard deviation</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galeotti, Marcello</creatorcontrib><creatorcontrib>Rabitti, Giovanni</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galeotti, Marcello</au><au>Rabitti, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the comparison of Shapley values for variance and standard deviation games</atitle><jtitle>Journal of applied probability</jtitle><addtitle>J. Appl. Probab</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>58</volume><issue>3</issue><spage>609</spage><epage>620</epage><pages>609-620</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><abstract>Motivated by the problem of variance allocation for the sum of dependent random variables, Colini-Baldeschi, Scarsini and Vaccari (2018) recently introduced Shapley values for variance and standard deviation games. These Shapley values constitute a criterion satisfying nice properties useful for allocating the variance and the standard deviation of the sum of dependent random variables. However, since Shapley values are in general computationally demanding, Colini-Baldeschi, Scarsini and Vaccari also formulated a conjecture about the relation of the Shapley values of two games, which they proved for the case of two dependent random variables. In this work we prove that their conjecture holds true in the case of an arbitrary number of independent random variables but, at the same time, we provide counterexamples to the conjecture for the case of three dependent random variables.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jpr.2020.106</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 2021-09, Vol.58 (3), p.609-620
issn 0021-9002
1475-6072
language eng
recordid cdi_proquest_journals_2572879960
source Cambridge University Press Journals Complete
subjects Dependent variables
Game theory
Games
Independent variables
Inequality
Original Article
Queuing theory
Random variables
Research Papers
Standard deviation
Variance
title On the comparison of Shapley values for variance and standard deviation games
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A48%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20comparison%20of%20Shapley%20values%20for%20variance%20and%20standard%20deviation%20games&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Galeotti,%20Marcello&rft.date=2021-09-01&rft.volume=58&rft.issue=3&rft.spage=609&rft.epage=620&rft.pages=609-620&rft.issn=0021-9002&rft.eissn=1475-6072&rft_id=info:doi/10.1017/jpr.2020.106&rft_dat=%3Cjstor_proqu%3E48656627%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572879960&rft_id=info:pmid/&rft_cupid=10_1017_jpr_2020_106&rft_jstor_id=48656627&rfr_iscdi=true