A High‐Capacity, Long‐Cycling All‐Solid‐State Lithium Battery Enabled by Integrated Cathode/Ultrathin Solid Electrolyte
Current all‐solid‐state lithium battery (ASSLB) manufacturing typically involves laborious fabrication and assembly of individual electrodes and solid electrolyte, which inevitably result in large interfacial resistances. Moreover, due to the unfavorable mechanical strength, most solid electrolytes...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2021-09, Vol.11 (35), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 35 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 11 |
creator | Lin, Yanke Wu, Maochun Sun, Jing Zhang, Leicheng Jian, Qinping Zhao, Tianshou |
description | Current all‐solid‐state lithium battery (ASSLB) manufacturing typically involves laborious fabrication and assembly of individual electrodes and solid electrolyte, which inevitably result in large interfacial resistances. Moreover, due to the unfavorable mechanical strength, most solid electrolytes are fabricated to be overly thick and are incapable of retarding lithium dendrite formation. These factors limit the attainable energy density and cyclability of ASSLBs. Here, a novel integrated cathode/solid electrolyte for scalable ASSLB manufacturing is reported by directly fabricating an ultrathin yet robust fiber network reinforced solid electrolyte on the cathode. The integrated design allows continuous ion conduction at both the interface and the entire cathode, thereby considerably reducing interfacial resistance and enabling higher cathode loading. Meanwhile, the strong fiber network endows the solid electrolyte with an ultrasmall thickness and superior dendrite suppression capability. As a result, the newly‐developed Li/LiFePO4 ASSLB achieves a high capacity of 155.2 mAh g–1 at 0.5 C and 45 °C with capacity retention of 84.3% after 500 cycles. Even with a cathode loading of 13 mg cm–2, the battery still delivers a capacity of 124.1 mAh g–1. Additionally, a pouch cell with this integrated design displays good electrochemical performance and safety, showing great promise for practical applications.
To overcome the limitations of conventional all‐solid‐state lithium battery (ASSLB) manufacturing, a novel integrated cathode/solid electrolyte is reported by directly fabricating an ultrathin yet robust solid electrolyte on the cathode. This work provides a new, scalable strategy for manufacturing advanced ASSLBs that exhibit high energy density and high cyclability. |
doi_str_mv | 10.1002/aenm.202101612 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2572791325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572791325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3172-4cd3e7aa20c2e6dde19c5cd6a0e35cc201f6e8d18b562557655eace4641d4d423</originalsourceid><addsrcrecordid>eNqFULFOwzAUjBBIVNCV2RIraW0nTpoxRIFWCjBA58i1XxNXblIcVygTfALfyJfgUFRG3nLvne7uSed5VwRPCMZ0yqHZTiimBJOI0BNv5CD0o1mIT497QM-9cddtsJswITgIRt57iuaqqr8-PjO-40LZ_gYVbVMNRC-0aiqUau2u51YrOaDlFlChbK32W3TLrQXTo7zhKw0SrXq0aCxUxokkyritWwnTpbaOqFWDflJQrkFY0-rewqV3tua6g_EvXnjLu_wlm_vF0_0iSwtfBCSmfihkADHnFAsKkZRAEsGEjDiGgAlBMVlHMJNktmIRZSyOGAMuIIxCIkMZ0uDCuz7k7kz7uofOlpt2bxr3sqQspnFCAsqcanJQCdN2nYF1uTNqy01fElwOPZdDz-WxZ2dIDoY3paH_R12m-ePDn_cbFLeGGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572791325</pqid></control><display><type>article</type><title>A High‐Capacity, Long‐Cycling All‐Solid‐State Lithium Battery Enabled by Integrated Cathode/Ultrathin Solid Electrolyte</title><source>Wiley Online Library All Journals</source><creator>Lin, Yanke ; Wu, Maochun ; Sun, Jing ; Zhang, Leicheng ; Jian, Qinping ; Zhao, Tianshou</creator><creatorcontrib>Lin, Yanke ; Wu, Maochun ; Sun, Jing ; Zhang, Leicheng ; Jian, Qinping ; Zhao, Tianshou</creatorcontrib><description>Current all‐solid‐state lithium battery (ASSLB) manufacturing typically involves laborious fabrication and assembly of individual electrodes and solid electrolyte, which inevitably result in large interfacial resistances. Moreover, due to the unfavorable mechanical strength, most solid electrolytes are fabricated to be overly thick and are incapable of retarding lithium dendrite formation. These factors limit the attainable energy density and cyclability of ASSLBs. Here, a novel integrated cathode/solid electrolyte for scalable ASSLB manufacturing is reported by directly fabricating an ultrathin yet robust fiber network reinforced solid electrolyte on the cathode. The integrated design allows continuous ion conduction at both the interface and the entire cathode, thereby considerably reducing interfacial resistance and enabling higher cathode loading. Meanwhile, the strong fiber network endows the solid electrolyte with an ultrasmall thickness and superior dendrite suppression capability. As a result, the newly‐developed Li/LiFePO4 ASSLB achieves a high capacity of 155.2 mAh g–1 at 0.5 C and 45 °C with capacity retention of 84.3% after 500 cycles. Even with a cathode loading of 13 mg cm–2, the battery still delivers a capacity of 124.1 mAh g–1. Additionally, a pouch cell with this integrated design displays good electrochemical performance and safety, showing great promise for practical applications.
To overcome the limitations of conventional all‐solid‐state lithium battery (ASSLB) manufacturing, a novel integrated cathode/solid electrolyte is reported by directly fabricating an ultrathin yet robust solid electrolyte on the cathode. This work provides a new, scalable strategy for manufacturing advanced ASSLBs that exhibit high energy density and high cyclability.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202101612</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>ASSLBs ; Cathodes ; Dendritic structure ; Electrochemical analysis ; Electrolytes ; Flux density ; high cathode loading ; interfaces ; Lithium ; Lithium batteries ; Manufacturing ; Molten salt electrolytes ; scalable manufacturing ; Solid electrolytes ; ultrathin solid electrolytes</subject><ispartof>Advanced energy materials, 2021-09, Vol.11 (35), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3172-4cd3e7aa20c2e6dde19c5cd6a0e35cc201f6e8d18b562557655eace4641d4d423</citedby><cites>FETCH-LOGICAL-c3172-4cd3e7aa20c2e6dde19c5cd6a0e35cc201f6e8d18b562557655eace4641d4d423</cites><orcidid>0000-0003-4825-2381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202101612$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202101612$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Lin, Yanke</creatorcontrib><creatorcontrib>Wu, Maochun</creatorcontrib><creatorcontrib>Sun, Jing</creatorcontrib><creatorcontrib>Zhang, Leicheng</creatorcontrib><creatorcontrib>Jian, Qinping</creatorcontrib><creatorcontrib>Zhao, Tianshou</creatorcontrib><title>A High‐Capacity, Long‐Cycling All‐Solid‐State Lithium Battery Enabled by Integrated Cathode/Ultrathin Solid Electrolyte</title><title>Advanced energy materials</title><description>Current all‐solid‐state lithium battery (ASSLB) manufacturing typically involves laborious fabrication and assembly of individual electrodes and solid electrolyte, which inevitably result in large interfacial resistances. Moreover, due to the unfavorable mechanical strength, most solid electrolytes are fabricated to be overly thick and are incapable of retarding lithium dendrite formation. These factors limit the attainable energy density and cyclability of ASSLBs. Here, a novel integrated cathode/solid electrolyte for scalable ASSLB manufacturing is reported by directly fabricating an ultrathin yet robust fiber network reinforced solid electrolyte on the cathode. The integrated design allows continuous ion conduction at both the interface and the entire cathode, thereby considerably reducing interfacial resistance and enabling higher cathode loading. Meanwhile, the strong fiber network endows the solid electrolyte with an ultrasmall thickness and superior dendrite suppression capability. As a result, the newly‐developed Li/LiFePO4 ASSLB achieves a high capacity of 155.2 mAh g–1 at 0.5 C and 45 °C with capacity retention of 84.3% after 500 cycles. Even with a cathode loading of 13 mg cm–2, the battery still delivers a capacity of 124.1 mAh g–1. Additionally, a pouch cell with this integrated design displays good electrochemical performance and safety, showing great promise for practical applications.
To overcome the limitations of conventional all‐solid‐state lithium battery (ASSLB) manufacturing, a novel integrated cathode/solid electrolyte is reported by directly fabricating an ultrathin yet robust solid electrolyte on the cathode. This work provides a new, scalable strategy for manufacturing advanced ASSLBs that exhibit high energy density and high cyclability.</description><subject>ASSLBs</subject><subject>Cathodes</subject><subject>Dendritic structure</subject><subject>Electrochemical analysis</subject><subject>Electrolytes</subject><subject>Flux density</subject><subject>high cathode loading</subject><subject>interfaces</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Manufacturing</subject><subject>Molten salt electrolytes</subject><subject>scalable manufacturing</subject><subject>Solid electrolytes</subject><subject>ultrathin solid electrolytes</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFULFOwzAUjBBIVNCV2RIraW0nTpoxRIFWCjBA58i1XxNXblIcVygTfALfyJfgUFRG3nLvne7uSed5VwRPCMZ0yqHZTiimBJOI0BNv5CD0o1mIT497QM-9cddtsJswITgIRt57iuaqqr8-PjO-40LZ_gYVbVMNRC-0aiqUau2u51YrOaDlFlChbK32W3TLrQXTo7zhKw0SrXq0aCxUxokkyritWwnTpbaOqFWDflJQrkFY0-rewqV3tua6g_EvXnjLu_wlm_vF0_0iSwtfBCSmfihkADHnFAsKkZRAEsGEjDiGgAlBMVlHMJNktmIRZSyOGAMuIIxCIkMZ0uDCuz7k7kz7uofOlpt2bxr3sqQspnFCAsqcanJQCdN2nYF1uTNqy01fElwOPZdDz-WxZ2dIDoY3paH_R12m-ePDn_cbFLeGGw</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Lin, Yanke</creator><creator>Wu, Maochun</creator><creator>Sun, Jing</creator><creator>Zhang, Leicheng</creator><creator>Jian, Qinping</creator><creator>Zhao, Tianshou</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4825-2381</orcidid></search><sort><creationdate>20210901</creationdate><title>A High‐Capacity, Long‐Cycling All‐Solid‐State Lithium Battery Enabled by Integrated Cathode/Ultrathin Solid Electrolyte</title><author>Lin, Yanke ; Wu, Maochun ; Sun, Jing ; Zhang, Leicheng ; Jian, Qinping ; Zhao, Tianshou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3172-4cd3e7aa20c2e6dde19c5cd6a0e35cc201f6e8d18b562557655eace4641d4d423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ASSLBs</topic><topic>Cathodes</topic><topic>Dendritic structure</topic><topic>Electrochemical analysis</topic><topic>Electrolytes</topic><topic>Flux density</topic><topic>high cathode loading</topic><topic>interfaces</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Manufacturing</topic><topic>Molten salt electrolytes</topic><topic>scalable manufacturing</topic><topic>Solid electrolytes</topic><topic>ultrathin solid electrolytes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Yanke</creatorcontrib><creatorcontrib>Wu, Maochun</creatorcontrib><creatorcontrib>Sun, Jing</creatorcontrib><creatorcontrib>Zhang, Leicheng</creatorcontrib><creatorcontrib>Jian, Qinping</creatorcontrib><creatorcontrib>Zhao, Tianshou</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Yanke</au><au>Wu, Maochun</au><au>Sun, Jing</au><au>Zhang, Leicheng</au><au>Jian, Qinping</au><au>Zhao, Tianshou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A High‐Capacity, Long‐Cycling All‐Solid‐State Lithium Battery Enabled by Integrated Cathode/Ultrathin Solid Electrolyte</atitle><jtitle>Advanced energy materials</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>11</volume><issue>35</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Current all‐solid‐state lithium battery (ASSLB) manufacturing typically involves laborious fabrication and assembly of individual electrodes and solid electrolyte, which inevitably result in large interfacial resistances. Moreover, due to the unfavorable mechanical strength, most solid electrolytes are fabricated to be overly thick and are incapable of retarding lithium dendrite formation. These factors limit the attainable energy density and cyclability of ASSLBs. Here, a novel integrated cathode/solid electrolyte for scalable ASSLB manufacturing is reported by directly fabricating an ultrathin yet robust fiber network reinforced solid electrolyte on the cathode. The integrated design allows continuous ion conduction at both the interface and the entire cathode, thereby considerably reducing interfacial resistance and enabling higher cathode loading. Meanwhile, the strong fiber network endows the solid electrolyte with an ultrasmall thickness and superior dendrite suppression capability. As a result, the newly‐developed Li/LiFePO4 ASSLB achieves a high capacity of 155.2 mAh g–1 at 0.5 C and 45 °C with capacity retention of 84.3% after 500 cycles. Even with a cathode loading of 13 mg cm–2, the battery still delivers a capacity of 124.1 mAh g–1. Additionally, a pouch cell with this integrated design displays good electrochemical performance and safety, showing great promise for practical applications.
To overcome the limitations of conventional all‐solid‐state lithium battery (ASSLB) manufacturing, a novel integrated cathode/solid electrolyte is reported by directly fabricating an ultrathin yet robust solid electrolyte on the cathode. This work provides a new, scalable strategy for manufacturing advanced ASSLBs that exhibit high energy density and high cyclability.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202101612</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4825-2381</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2021-09, Vol.11 (35), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2572791325 |
source | Wiley Online Library All Journals |
subjects | ASSLBs Cathodes Dendritic structure Electrochemical analysis Electrolytes Flux density high cathode loading interfaces Lithium Lithium batteries Manufacturing Molten salt electrolytes scalable manufacturing Solid electrolytes ultrathin solid electrolytes |
title | A High‐Capacity, Long‐Cycling All‐Solid‐State Lithium Battery Enabled by Integrated Cathode/Ultrathin Solid Electrolyte |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A38%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20High%E2%80%90Capacity,%20Long%E2%80%90Cycling%20All%E2%80%90Solid%E2%80%90State%20Lithium%20Battery%20Enabled%20by%20Integrated%20Cathode/Ultrathin%20Solid%20Electrolyte&rft.jtitle=Advanced%20energy%20materials&rft.au=Lin,%20Yanke&rft.date=2021-09-01&rft.volume=11&rft.issue=35&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202101612&rft_dat=%3Cproquest_cross%3E2572791325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572791325&rft_id=info:pmid/&rfr_iscdi=true |