Improving AMR parsing by exploiting the dependency parsing as an auxiliary task

meaning representations (AMRs) represent sentence semantics as rooted labeled directed acyclic graphs. Though there is a strong correlation between the AMR graph of a sentence and its corresponding dependency tree, the recent neural network AMR parsers do neglect the exploitation of dependency struc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2021-08, Vol.80 (20), p.30827-30838
Hauptverfasser: Wu, Taizhong, Zhou, Junsheng, Qu, Weiguang, Gu, Yanhui, Li, Bin, Zhong, Huilin, Long, Yunfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30838
container_issue 20
container_start_page 30827
container_title Multimedia tools and applications
container_volume 80
creator Wu, Taizhong
Zhou, Junsheng
Qu, Weiguang
Gu, Yanhui
Li, Bin
Zhong, Huilin
Long, Yunfei
description meaning representations (AMRs) represent sentence semantics as rooted labeled directed acyclic graphs. Though there is a strong correlation between the AMR graph of a sentence and its corresponding dependency tree, the recent neural network AMR parsers do neglect the exploitation of dependency structure information. In this paper, we explore a novel approach to exploiting dependency structures for AMR parsing. Unlike traditional pipeline models, we treat dependency parsing as an auxiliary task for AMR parsing under the multi-task learning framework by sharing neural network parameters and selectively extracting syntactic representation by the attention mechanism. Particularly, to balance the gradients and focus on the AMR parsing task, we present a new dynamical weighting scheme in the loss function. The experimental results on the LDC2015E86 and LDC2017T10 dataset show that our dependency-auxiliary AMR parser significantly outperforms the baseline and its pipeline counterpart, and demonstrate that the neural AMR parsers can be greatly boosted with the help of effective methods of integrating syntax.
doi_str_mv 10.1007/s11042-020-09967-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2572735046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572735046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-aa032d366dcb6cf24c4f0b44d1c4d0e3b4dd61fc6b651727628f816be6c65a1d3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wNOC5-hMkk3aYylqC5WC6Dlkk2zd2u6uyVbaf2_qit48zRt4b-bxEXKNcIsA6i4igmAUGFAYj6Wi_IQMMFecKsXwNGk-AqpywHNyEeMaAGXOxIAs59s2NJ9VvcomT89Za0I86uKQ-X27aaruuHVvPnO-9bXztT38mkzMTJ2Z3b7aVCYcss7E90tyVppN9Fc_c0heH-5fpjO6WD7Op5MFtRzHHTUGOHNcSmcLaUsmrCihEMKhFQ48L4RzEksrC5mjYkqyUTlCWXhpZW7Q8SG56e-m9h87Hzu9bnahTi81y1OA5yBkcrHeZUMTY_ClbkO1TV01gj6C0z04ncDpb3CapxDvQzGZ65UPf6f_SX0BxAVw7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572735046</pqid></control><display><type>article</type><title>Improving AMR parsing by exploiting the dependency parsing as an auxiliary task</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wu, Taizhong ; Zhou, Junsheng ; Qu, Weiguang ; Gu, Yanhui ; Li, Bin ; Zhong, Huilin ; Long, Yunfei</creator><creatorcontrib>Wu, Taizhong ; Zhou, Junsheng ; Qu, Weiguang ; Gu, Yanhui ; Li, Bin ; Zhong, Huilin ; Long, Yunfei</creatorcontrib><description>meaning representations (AMRs) represent sentence semantics as rooted labeled directed acyclic graphs. Though there is a strong correlation between the AMR graph of a sentence and its corresponding dependency tree, the recent neural network AMR parsers do neglect the exploitation of dependency structure information. In this paper, we explore a novel approach to exploiting dependency structures for AMR parsing. Unlike traditional pipeline models, we treat dependency parsing as an auxiliary task for AMR parsing under the multi-task learning framework by sharing neural network parameters and selectively extracting syntactic representation by the attention mechanism. Particularly, to balance the gradients and focus on the AMR parsing task, we present a new dynamical weighting scheme in the loss function. The experimental results on the LDC2015E86 and LDC2017T10 dataset show that our dependency-auxiliary AMR parser significantly outperforms the baseline and its pipeline counterpart, and demonstrate that the neural AMR parsers can be greatly boosted with the help of effective methods of integrating syntax.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-020-09967-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Graph theory ; Multimedia Information Systems ; Neural networks ; Parsers ; Representations ; Semantics ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2021-08, Vol.80 (20), p.30827-30838</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-aa032d366dcb6cf24c4f0b44d1c4d0e3b4dd61fc6b651727628f816be6c65a1d3</citedby><cites>FETCH-LOGICAL-c319t-aa032d366dcb6cf24c4f0b44d1c4d0e3b4dd61fc6b651727628f816be6c65a1d3</cites><orcidid>0000-0002-1919-8227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-020-09967-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-020-09967-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wu, Taizhong</creatorcontrib><creatorcontrib>Zhou, Junsheng</creatorcontrib><creatorcontrib>Qu, Weiguang</creatorcontrib><creatorcontrib>Gu, Yanhui</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Zhong, Huilin</creatorcontrib><creatorcontrib>Long, Yunfei</creatorcontrib><title>Improving AMR parsing by exploiting the dependency parsing as an auxiliary task</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>meaning representations (AMRs) represent sentence semantics as rooted labeled directed acyclic graphs. Though there is a strong correlation between the AMR graph of a sentence and its corresponding dependency tree, the recent neural network AMR parsers do neglect the exploitation of dependency structure information. In this paper, we explore a novel approach to exploiting dependency structures for AMR parsing. Unlike traditional pipeline models, we treat dependency parsing as an auxiliary task for AMR parsing under the multi-task learning framework by sharing neural network parameters and selectively extracting syntactic representation by the attention mechanism. Particularly, to balance the gradients and focus on the AMR parsing task, we present a new dynamical weighting scheme in the loss function. The experimental results on the LDC2015E86 and LDC2017T10 dataset show that our dependency-auxiliary AMR parser significantly outperforms the baseline and its pipeline counterpart, and demonstrate that the neural AMR parsers can be greatly boosted with the help of effective methods of integrating syntax.</description><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Graph theory</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Parsers</subject><subject>Representations</subject><subject>Semantics</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEFLAzEQhYMoWKt_wNOC5-hMkk3aYylqC5WC6Dlkk2zd2u6uyVbaf2_qit48zRt4b-bxEXKNcIsA6i4igmAUGFAYj6Wi_IQMMFecKsXwNGk-AqpywHNyEeMaAGXOxIAs59s2NJ9VvcomT89Za0I86uKQ-X27aaruuHVvPnO-9bXztT38mkzMTJ2Z3b7aVCYcss7E90tyVppN9Fc_c0heH-5fpjO6WD7Op5MFtRzHHTUGOHNcSmcLaUsmrCihEMKhFQ48L4RzEksrC5mjYkqyUTlCWXhpZW7Q8SG56e-m9h87Hzu9bnahTi81y1OA5yBkcrHeZUMTY_ClbkO1TV01gj6C0z04ncDpb3CapxDvQzGZ65UPf6f_SX0BxAVw7Q</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Wu, Taizhong</creator><creator>Zhou, Junsheng</creator><creator>Qu, Weiguang</creator><creator>Gu, Yanhui</creator><creator>Li, Bin</creator><creator>Zhong, Huilin</creator><creator>Long, Yunfei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1919-8227</orcidid></search><sort><creationdate>20210801</creationdate><title>Improving AMR parsing by exploiting the dependency parsing as an auxiliary task</title><author>Wu, Taizhong ; Zhou, Junsheng ; Qu, Weiguang ; Gu, Yanhui ; Li, Bin ; Zhong, Huilin ; Long, Yunfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-aa032d366dcb6cf24c4f0b44d1c4d0e3b4dd61fc6b651727628f816be6c65a1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Graph theory</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Parsers</topic><topic>Representations</topic><topic>Semantics</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Taizhong</creatorcontrib><creatorcontrib>Zhou, Junsheng</creatorcontrib><creatorcontrib>Qu, Weiguang</creatorcontrib><creatorcontrib>Gu, Yanhui</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Zhong, Huilin</creatorcontrib><creatorcontrib>Long, Yunfei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Taizhong</au><au>Zhou, Junsheng</au><au>Qu, Weiguang</au><au>Gu, Yanhui</au><au>Li, Bin</au><au>Zhong, Huilin</au><au>Long, Yunfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving AMR parsing by exploiting the dependency parsing as an auxiliary task</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>80</volume><issue>20</issue><spage>30827</spage><epage>30838</epage><pages>30827-30838</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>meaning representations (AMRs) represent sentence semantics as rooted labeled directed acyclic graphs. Though there is a strong correlation between the AMR graph of a sentence and its corresponding dependency tree, the recent neural network AMR parsers do neglect the exploitation of dependency structure information. In this paper, we explore a novel approach to exploiting dependency structures for AMR parsing. Unlike traditional pipeline models, we treat dependency parsing as an auxiliary task for AMR parsing under the multi-task learning framework by sharing neural network parameters and selectively extracting syntactic representation by the attention mechanism. Particularly, to balance the gradients and focus on the AMR parsing task, we present a new dynamical weighting scheme in the loss function. The experimental results on the LDC2015E86 and LDC2017T10 dataset show that our dependency-auxiliary AMR parser significantly outperforms the baseline and its pipeline counterpart, and demonstrate that the neural AMR parsers can be greatly boosted with the help of effective methods of integrating syntax.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-020-09967-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1919-8227</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2021-08, Vol.80 (20), p.30827-30838
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2572735046
source SpringerLink Journals - AutoHoldings
subjects Computer Communication Networks
Computer Science
Data Structures and Information Theory
Graph theory
Multimedia Information Systems
Neural networks
Parsers
Representations
Semantics
Special Purpose and Application-Based Systems
title Improving AMR parsing by exploiting the dependency parsing as an auxiliary task
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A14%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20AMR%20parsing%20by%20exploiting%20the%20dependency%20parsing%20as%20an%20auxiliary%20task&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Wu,%20Taizhong&rft.date=2021-08-01&rft.volume=80&rft.issue=20&rft.spage=30827&rft.epage=30838&rft.pages=30827-30838&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-020-09967-3&rft_dat=%3Cproquest_cross%3E2572735046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572735046&rft_id=info:pmid/&rfr_iscdi=true