Improving AMR parsing by exploiting the dependency parsing as an auxiliary task
meaning representations (AMRs) represent sentence semantics as rooted labeled directed acyclic graphs. Though there is a strong correlation between the AMR graph of a sentence and its corresponding dependency tree, the recent neural network AMR parsers do neglect the exploitation of dependency struc...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2021-08, Vol.80 (20), p.30827-30838 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30838 |
---|---|
container_issue | 20 |
container_start_page | 30827 |
container_title | Multimedia tools and applications |
container_volume | 80 |
creator | Wu, Taizhong Zhou, Junsheng Qu, Weiguang Gu, Yanhui Li, Bin Zhong, Huilin Long, Yunfei |
description | meaning representations (AMRs) represent sentence semantics as rooted labeled directed acyclic graphs. Though there is a strong correlation between the AMR graph of a sentence and its corresponding dependency tree, the recent neural network AMR parsers do neglect the exploitation of dependency structure information. In this paper, we explore a novel approach to exploiting dependency structures for AMR parsing. Unlike traditional pipeline models, we treat dependency parsing as an auxiliary task for AMR parsing under the multi-task learning framework by sharing neural network parameters and selectively extracting syntactic representation by the attention mechanism. Particularly, to balance the gradients and focus on the AMR parsing task, we present a new dynamical weighting scheme in the loss function. The experimental results on the LDC2015E86 and LDC2017T10 dataset show that our dependency-auxiliary AMR parser significantly outperforms the baseline and its pipeline counterpart, and demonstrate that the neural AMR parsers can be greatly boosted with the help of effective methods of integrating syntax. |
doi_str_mv | 10.1007/s11042-020-09967-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2572735046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572735046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-aa032d366dcb6cf24c4f0b44d1c4d0e3b4dd61fc6b651727628f816be6c65a1d3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wNOC5-hMkk3aYylqC5WC6Dlkk2zd2u6uyVbaf2_qit48zRt4b-bxEXKNcIsA6i4igmAUGFAYj6Wi_IQMMFecKsXwNGk-AqpywHNyEeMaAGXOxIAs59s2NJ9VvcomT89Za0I86uKQ-X27aaruuHVvPnO-9bXztT38mkzMTJ2Z3b7aVCYcss7E90tyVppN9Fc_c0heH-5fpjO6WD7Op5MFtRzHHTUGOHNcSmcLaUsmrCihEMKhFQ48L4RzEksrC5mjYkqyUTlCWXhpZW7Q8SG56e-m9h87Hzu9bnahTi81y1OA5yBkcrHeZUMTY_ClbkO1TV01gj6C0z04ncDpb3CapxDvQzGZ65UPf6f_SX0BxAVw7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572735046</pqid></control><display><type>article</type><title>Improving AMR parsing by exploiting the dependency parsing as an auxiliary task</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wu, Taizhong ; Zhou, Junsheng ; Qu, Weiguang ; Gu, Yanhui ; Li, Bin ; Zhong, Huilin ; Long, Yunfei</creator><creatorcontrib>Wu, Taizhong ; Zhou, Junsheng ; Qu, Weiguang ; Gu, Yanhui ; Li, Bin ; Zhong, Huilin ; Long, Yunfei</creatorcontrib><description>meaning representations (AMRs) represent sentence semantics as rooted labeled directed acyclic graphs. Though there is a strong correlation between the AMR graph of a sentence and its corresponding dependency tree, the recent neural network AMR parsers do neglect the exploitation of dependency structure information. In this paper, we explore a novel approach to exploiting dependency structures for AMR parsing. Unlike traditional pipeline models, we treat dependency parsing as an auxiliary task for AMR parsing under the multi-task learning framework by sharing neural network parameters and selectively extracting syntactic representation by the attention mechanism. Particularly, to balance the gradients and focus on the AMR parsing task, we present a new dynamical weighting scheme in the loss function. The experimental results on the LDC2015E86 and LDC2017T10 dataset show that our dependency-auxiliary AMR parser significantly outperforms the baseline and its pipeline counterpart, and demonstrate that the neural AMR parsers can be greatly boosted with the help of effective methods of integrating syntax.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-020-09967-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Graph theory ; Multimedia Information Systems ; Neural networks ; Parsers ; Representations ; Semantics ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2021-08, Vol.80 (20), p.30827-30838</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-aa032d366dcb6cf24c4f0b44d1c4d0e3b4dd61fc6b651727628f816be6c65a1d3</citedby><cites>FETCH-LOGICAL-c319t-aa032d366dcb6cf24c4f0b44d1c4d0e3b4dd61fc6b651727628f816be6c65a1d3</cites><orcidid>0000-0002-1919-8227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-020-09967-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-020-09967-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wu, Taizhong</creatorcontrib><creatorcontrib>Zhou, Junsheng</creatorcontrib><creatorcontrib>Qu, Weiguang</creatorcontrib><creatorcontrib>Gu, Yanhui</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Zhong, Huilin</creatorcontrib><creatorcontrib>Long, Yunfei</creatorcontrib><title>Improving AMR parsing by exploiting the dependency parsing as an auxiliary task</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>meaning representations (AMRs) represent sentence semantics as rooted labeled directed acyclic graphs. Though there is a strong correlation between the AMR graph of a sentence and its corresponding dependency tree, the recent neural network AMR parsers do neglect the exploitation of dependency structure information. In this paper, we explore a novel approach to exploiting dependency structures for AMR parsing. Unlike traditional pipeline models, we treat dependency parsing as an auxiliary task for AMR parsing under the multi-task learning framework by sharing neural network parameters and selectively extracting syntactic representation by the attention mechanism. Particularly, to balance the gradients and focus on the AMR parsing task, we present a new dynamical weighting scheme in the loss function. The experimental results on the LDC2015E86 and LDC2017T10 dataset show that our dependency-auxiliary AMR parser significantly outperforms the baseline and its pipeline counterpart, and demonstrate that the neural AMR parsers can be greatly boosted with the help of effective methods of integrating syntax.</description><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Graph theory</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Parsers</subject><subject>Representations</subject><subject>Semantics</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEFLAzEQhYMoWKt_wNOC5-hMkk3aYylqC5WC6Dlkk2zd2u6uyVbaf2_qit48zRt4b-bxEXKNcIsA6i4igmAUGFAYj6Wi_IQMMFecKsXwNGk-AqpywHNyEeMaAGXOxIAs59s2NJ9VvcomT89Za0I86uKQ-X27aaruuHVvPnO-9bXztT38mkzMTJ2Z3b7aVCYcss7E90tyVppN9Fc_c0heH-5fpjO6WD7Op5MFtRzHHTUGOHNcSmcLaUsmrCihEMKhFQ48L4RzEksrC5mjYkqyUTlCWXhpZW7Q8SG56e-m9h87Hzu9bnahTi81y1OA5yBkcrHeZUMTY_ClbkO1TV01gj6C0z04ncDpb3CapxDvQzGZ65UPf6f_SX0BxAVw7Q</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Wu, Taizhong</creator><creator>Zhou, Junsheng</creator><creator>Qu, Weiguang</creator><creator>Gu, Yanhui</creator><creator>Li, Bin</creator><creator>Zhong, Huilin</creator><creator>Long, Yunfei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1919-8227</orcidid></search><sort><creationdate>20210801</creationdate><title>Improving AMR parsing by exploiting the dependency parsing as an auxiliary task</title><author>Wu, Taizhong ; Zhou, Junsheng ; Qu, Weiguang ; Gu, Yanhui ; Li, Bin ; Zhong, Huilin ; Long, Yunfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-aa032d366dcb6cf24c4f0b44d1c4d0e3b4dd61fc6b651727628f816be6c65a1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Graph theory</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Parsers</topic><topic>Representations</topic><topic>Semantics</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Taizhong</creatorcontrib><creatorcontrib>Zhou, Junsheng</creatorcontrib><creatorcontrib>Qu, Weiguang</creatorcontrib><creatorcontrib>Gu, Yanhui</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Zhong, Huilin</creatorcontrib><creatorcontrib>Long, Yunfei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Taizhong</au><au>Zhou, Junsheng</au><au>Qu, Weiguang</au><au>Gu, Yanhui</au><au>Li, Bin</au><au>Zhong, Huilin</au><au>Long, Yunfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving AMR parsing by exploiting the dependency parsing as an auxiliary task</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>80</volume><issue>20</issue><spage>30827</spage><epage>30838</epage><pages>30827-30838</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>meaning representations (AMRs) represent sentence semantics as rooted labeled directed acyclic graphs. Though there is a strong correlation between the AMR graph of a sentence and its corresponding dependency tree, the recent neural network AMR parsers do neglect the exploitation of dependency structure information. In this paper, we explore a novel approach to exploiting dependency structures for AMR parsing. Unlike traditional pipeline models, we treat dependency parsing as an auxiliary task for AMR parsing under the multi-task learning framework by sharing neural network parameters and selectively extracting syntactic representation by the attention mechanism. Particularly, to balance the gradients and focus on the AMR parsing task, we present a new dynamical weighting scheme in the loss function. The experimental results on the LDC2015E86 and LDC2017T10 dataset show that our dependency-auxiliary AMR parser significantly outperforms the baseline and its pipeline counterpart, and demonstrate that the neural AMR parsers can be greatly boosted with the help of effective methods of integrating syntax.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-020-09967-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1919-8227</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2021-08, Vol.80 (20), p.30827-30838 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2572735046 |
source | SpringerLink Journals - AutoHoldings |
subjects | Computer Communication Networks Computer Science Data Structures and Information Theory Graph theory Multimedia Information Systems Neural networks Parsers Representations Semantics Special Purpose and Application-Based Systems |
title | Improving AMR parsing by exploiting the dependency parsing as an auxiliary task |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A14%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20AMR%20parsing%20by%20exploiting%20the%20dependency%20parsing%20as%20an%20auxiliary%20task&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Wu,%20Taizhong&rft.date=2021-08-01&rft.volume=80&rft.issue=20&rft.spage=30827&rft.epage=30838&rft.pages=30827-30838&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-020-09967-3&rft_dat=%3Cproquest_cross%3E2572735046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572735046&rft_id=info:pmid/&rfr_iscdi=true |