CompNet: Competitive Neural Network for Palmprint Recognition Using Learnable Gabor Kernels

Contactless palmprint recognition has recently made significant progress in palm-scanning payment and social security. However, most existing methods are based on handcrafted kernels and are sensitive to illumination and scale variations. To address this problem, a competitive convolutional neural n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2021, Vol.28, p.1739-1743
Hauptverfasser: Liang, Xu, Yang, Jinyang, Lu, Guangming, Zhang, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1743
container_issue
container_start_page 1739
container_title IEEE signal processing letters
container_volume 28
creator Liang, Xu
Yang, Jinyang
Lu, Guangming
Zhang, David
description Contactless palmprint recognition has recently made significant progress in palm-scanning payment and social security. However, most existing methods are based on handcrafted kernels and are sensitive to illumination and scale variations. To address this problem, a competitive convolutional neural network (CompNet) with constrained learnable Gabor filters is proposed for contactless palmprint recognition. The proposed CompNet is built on multisize competitive blocks, which are applied to effectively exploit the rich direction ordering information of the palmprint patterns by means of the ad-hoc softmax and channel-wise convolution operations. Compared to the current deep neural networks, the backbone of the proposed network contains only very few parameters, making it quite easy to train, especially on small-scale datasets. Experimental results obtained on four popular contactless palmprint datasets demonstrate that the proposed CompNet achieves the lowest equal error rate compared to the most commonly used methods.
doi_str_mv 10.1109/LSP.2021.3103475
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2572674910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9512475</ieee_id><sourcerecordid>2572674910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-a4319e63883cbc9b33ae85f1b8d0d8a88e586f41df30fa9b51d7c925ee1633e03</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxoMoOKd3wUvAc2de07SJNxk6xTKHupOHkLavo7NrZtIp_vembHj6Pni_7_HeR8glsAkAUzf522ISsxgmHBhPMnFERiCEjGKewnHwLGORUkyekjPv14wxCVKMyMfUbrZz7G_pYLBv-uYb6Rx3zrRB-h_rPmltHV2YdrN1TdfTVyztqgug7ejSN92K5mhcZ4oW6cwUgX1G12Hrz8lJbVqPFwcdk-XD_fv0McpfZk_Tuzwqucj6yCQcFKZcSl4WpSo4NyhFDYWsWCWNlChkWidQ1ZzVRhUCqqxUsUCElHNkfEyu93u3zn7t0Pd6bXfhoNbrWGRxmiUKBortqdJZ7x3WOryzMe5XA9NDhTpUqIcK9aHCELnaRxpE_MeVgHiY_gHXRW0b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572674910</pqid></control><display><type>article</type><title>CompNet: Competitive Neural Network for Palmprint Recognition Using Learnable Gabor Kernels</title><source>IEEE Electronic Library (IEL)</source><creator>Liang, Xu ; Yang, Jinyang ; Lu, Guangming ; Zhang, David</creator><creatorcontrib>Liang, Xu ; Yang, Jinyang ; Lu, Guangming ; Zhang, David</creatorcontrib><description>Contactless palmprint recognition has recently made significant progress in palm-scanning payment and social security. However, most existing methods are based on handcrafted kernels and are sensitive to illumination and scale variations. To address this problem, a competitive convolutional neural network (CompNet) with constrained learnable Gabor filters is proposed for contactless palmprint recognition. The proposed CompNet is built on multisize competitive blocks, which are applied to effectively exploit the rich direction ordering information of the palmprint patterns by means of the ad-hoc softmax and channel-wise convolution operations. Compared to the current deep neural networks, the backbone of the proposed network contains only very few parameters, making it quite easy to train, especially on small-scale datasets. Experimental results obtained on four popular contactless palmprint datasets demonstrate that the proposed CompNet achieves the lowest equal error rate compared to the most commonly used methods.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2021.3103475</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Biometrics ; competitive block ; competitive feature encoder ; Convolution ; Data mining ; Datasets ; Feature extraction ; Gabor filters ; Kernel ; Kernels ; learnable Gabor filter ; Neural networks ; Palmprint recognition ; Password ; Recognition ; Shape ; Social security</subject><ispartof>IEEE signal processing letters, 2021, Vol.28, p.1739-1743</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-a4319e63883cbc9b33ae85f1b8d0d8a88e586f41df30fa9b51d7c925ee1633e03</citedby><cites>FETCH-LOGICAL-c357t-a4319e63883cbc9b33ae85f1b8d0d8a88e586f41df30fa9b51d7c925ee1633e03</cites><orcidid>0000-0003-1578-2634 ; 0000-0003-4332-3494 ; 0000-0002-5027-5286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9512475$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9512475$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang, Xu</creatorcontrib><creatorcontrib>Yang, Jinyang</creatorcontrib><creatorcontrib>Lu, Guangming</creatorcontrib><creatorcontrib>Zhang, David</creatorcontrib><title>CompNet: Competitive Neural Network for Palmprint Recognition Using Learnable Gabor Kernels</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Contactless palmprint recognition has recently made significant progress in palm-scanning payment and social security. However, most existing methods are based on handcrafted kernels and are sensitive to illumination and scale variations. To address this problem, a competitive convolutional neural network (CompNet) with constrained learnable Gabor filters is proposed for contactless palmprint recognition. The proposed CompNet is built on multisize competitive blocks, which are applied to effectively exploit the rich direction ordering information of the palmprint patterns by means of the ad-hoc softmax and channel-wise convolution operations. Compared to the current deep neural networks, the backbone of the proposed network contains only very few parameters, making it quite easy to train, especially on small-scale datasets. Experimental results obtained on four popular contactless palmprint datasets demonstrate that the proposed CompNet achieves the lowest equal error rate compared to the most commonly used methods.</description><subject>Artificial neural networks</subject><subject>Biometrics</subject><subject>competitive block</subject><subject>competitive feature encoder</subject><subject>Convolution</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Gabor filters</subject><subject>Kernel</subject><subject>Kernels</subject><subject>learnable Gabor filter</subject><subject>Neural networks</subject><subject>Palmprint recognition</subject><subject>Password</subject><subject>Recognition</subject><subject>Shape</subject><subject>Social security</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUxoMoOKd3wUvAc2de07SJNxk6xTKHupOHkLavo7NrZtIp_vembHj6Pni_7_HeR8glsAkAUzf522ISsxgmHBhPMnFERiCEjGKewnHwLGORUkyekjPv14wxCVKMyMfUbrZz7G_pYLBv-uYb6Rx3zrRB-h_rPmltHV2YdrN1TdfTVyztqgug7ejSN92K5mhcZ4oW6cwUgX1G12Hrz8lJbVqPFwcdk-XD_fv0McpfZk_Tuzwqucj6yCQcFKZcSl4WpSo4NyhFDYWsWCWNlChkWidQ1ZzVRhUCqqxUsUCElHNkfEyu93u3zn7t0Pd6bXfhoNbrWGRxmiUKBortqdJZ7x3WOryzMe5XA9NDhTpUqIcK9aHCELnaRxpE_MeVgHiY_gHXRW0b</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Liang, Xu</creator><creator>Yang, Jinyang</creator><creator>Lu, Guangming</creator><creator>Zhang, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1578-2634</orcidid><orcidid>https://orcid.org/0000-0003-4332-3494</orcidid><orcidid>https://orcid.org/0000-0002-5027-5286</orcidid></search><sort><creationdate>2021</creationdate><title>CompNet: Competitive Neural Network for Palmprint Recognition Using Learnable Gabor Kernels</title><author>Liang, Xu ; Yang, Jinyang ; Lu, Guangming ; Zhang, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-a4319e63883cbc9b33ae85f1b8d0d8a88e586f41df30fa9b51d7c925ee1633e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Biometrics</topic><topic>competitive block</topic><topic>competitive feature encoder</topic><topic>Convolution</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Gabor filters</topic><topic>Kernel</topic><topic>Kernels</topic><topic>learnable Gabor filter</topic><topic>Neural networks</topic><topic>Palmprint recognition</topic><topic>Password</topic><topic>Recognition</topic><topic>Shape</topic><topic>Social security</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Xu</creatorcontrib><creatorcontrib>Yang, Jinyang</creatorcontrib><creatorcontrib>Lu, Guangming</creatorcontrib><creatorcontrib>Zhang, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang, Xu</au><au>Yang, Jinyang</au><au>Lu, Guangming</au><au>Zhang, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CompNet: Competitive Neural Network for Palmprint Recognition Using Learnable Gabor Kernels</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2021</date><risdate>2021</risdate><volume>28</volume><spage>1739</spage><epage>1743</epage><pages>1739-1743</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Contactless palmprint recognition has recently made significant progress in palm-scanning payment and social security. However, most existing methods are based on handcrafted kernels and are sensitive to illumination and scale variations. To address this problem, a competitive convolutional neural network (CompNet) with constrained learnable Gabor filters is proposed for contactless palmprint recognition. The proposed CompNet is built on multisize competitive blocks, which are applied to effectively exploit the rich direction ordering information of the palmprint patterns by means of the ad-hoc softmax and channel-wise convolution operations. Compared to the current deep neural networks, the backbone of the proposed network contains only very few parameters, making it quite easy to train, especially on small-scale datasets. Experimental results obtained on four popular contactless palmprint datasets demonstrate that the proposed CompNet achieves the lowest equal error rate compared to the most commonly used methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2021.3103475</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1578-2634</orcidid><orcidid>https://orcid.org/0000-0003-4332-3494</orcidid><orcidid>https://orcid.org/0000-0002-5027-5286</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2021, Vol.28, p.1739-1743
issn 1070-9908
1558-2361
language eng
recordid cdi_proquest_journals_2572674910
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Biometrics
competitive block
competitive feature encoder
Convolution
Data mining
Datasets
Feature extraction
Gabor filters
Kernel
Kernels
learnable Gabor filter
Neural networks
Palmprint recognition
Password
Recognition
Shape
Social security
title CompNet: Competitive Neural Network for Palmprint Recognition Using Learnable Gabor Kernels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T12%3A58%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CompNet:%20Competitive%20Neural%20Network%20for%20Palmprint%20Recognition%20Using%20Learnable%20Gabor%20Kernels&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Liang,%20Xu&rft.date=2021&rft.volume=28&rft.spage=1739&rft.epage=1743&rft.pages=1739-1743&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2021.3103475&rft_dat=%3Cproquest_RIE%3E2572674910%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572674910&rft_id=info:pmid/&rft_ieee_id=9512475&rfr_iscdi=true