A Hybrid WD-EEMD sEMG Feature Extraction Technique for Lower Limb Activity Recognition
Classification and analysis of surface EMG (sEMG) signals have been of particular interest due to their numerous applications in the biomedical field. They can be used for the diagnosis of neuromuscular diseases, kinesiological studies, and human-machine interaction. However, these signals are diffi...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2021-09, Vol.21 (18), p.20431-20439 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20439 |
---|---|
container_issue | 18 |
container_start_page | 20431 |
container_title | IEEE sensors journal |
container_volume | 21 |
creator | Vijayvargiya, Ankit Gupta, Vishu Kumar, Rajesh Dey, Nilanjan Tavares, Joao Manuel R. S. |
description | Classification and analysis of surface EMG (sEMG) signals have been of particular interest due to their numerous applications in the biomedical field. They can be used for the diagnosis of neuromuscular diseases, kinesiological studies, and human-machine interaction. However, these signals are difficult to process due to their noisy nature. To overcome this problem, a hybrid of wavelet with ensemble empirical mode decomposition pre-processing technique called WD-EEMD is proposed for classifying lower limb activities based on sEMG signals in healthy and knee abnormal subjects. First, Wavelet De-noising is used for filtering out white Gaussian Noise (WGN) and unwanted signals (contribution of other muscle signals). Next, an Ensemble Empirical Mode Decomposition is used for filtering out power line interference (PLI) and baseline wandering (BW) noises, followed by extraction of a total of nine time-domain features. Finally, the performance parameters of the Linear Discriminant Analysis (LDA) classifier are calculated with a 3-fold cross-validation technique. This study involves 11 healthy and 11 individuals with a knee abnormality for three different activities: walking, flexion of the leg up (standing), and leg extension from sitting position (sitting). Different pre-processing techniques similar to that of WD-EEMD were compared. It was observed that the proposed method achieves an average classification accuracy of 90.69% and 97.45% for healthy subjects and knee abnormal subjects, respectively. |
doi_str_mv | 10.1109/JSEN.2021.3095594 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2572670801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9477576</ieee_id><sourcerecordid>2572670801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-8f853fdf053a979d5f9ee575bcdc46f445d43bd7d0305a7e25feda65472327053</originalsourceid><addsrcrecordid>eNo9kF1PwjAUhhujiYj-AONNE6-H7dqu6yWBARrQRPHjrtnWUy2RDbuh8u_tAvGmp8l53nNOHoQuKRlQStTN3VN2P4hJTAeMKCEUP0I9KkQaUcnT4-7PSMSZfDtFZ02zIoQqKWQPvQzxbFd4Z_DrOMqyxRg32WKKJ5C3Ww84-219XraurvASyo_KfW0B29rjef0D4XXrAg9D_9u1O_wIZf1euY4-Ryc2_2zg4lD76HmSLUezaP4wvR0N51HJEtZGqU0Fs8YSwXIllRFWAQgpitKUPLGcC8NZYaQhjIhcQiwsmDwRXMYsliHVR9f7uRtfh9OaVq_qra_CSh0LGSeSpIQGiu6p0tdN48HqjXfr3O80JbrTpzt9utOnD_pC5mqfcQDwzysug7aE_QF7XGpP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572670801</pqid></control><display><type>article</type><title>A Hybrid WD-EEMD sEMG Feature Extraction Technique for Lower Limb Activity Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Vijayvargiya, Ankit ; Gupta, Vishu ; Kumar, Rajesh ; Dey, Nilanjan ; Tavares, Joao Manuel R. S.</creator><creatorcontrib>Vijayvargiya, Ankit ; Gupta, Vishu ; Kumar, Rajesh ; Dey, Nilanjan ; Tavares, Joao Manuel R. S.</creatorcontrib><description>Classification and analysis of surface EMG (sEMG) signals have been of particular interest due to their numerous applications in the biomedical field. They can be used for the diagnosis of neuromuscular diseases, kinesiological studies, and human-machine interaction. However, these signals are difficult to process due to their noisy nature. To overcome this problem, a hybrid of wavelet with ensemble empirical mode decomposition pre-processing technique called WD-EEMD is proposed for classifying lower limb activities based on sEMG signals in healthy and knee abnormal subjects. First, Wavelet De-noising is used for filtering out white Gaussian Noise (WGN) and unwanted signals (contribution of other muscle signals). Next, an Ensemble Empirical Mode Decomposition is used for filtering out power line interference (PLI) and baseline wandering (BW) noises, followed by extraction of a total of nine time-domain features. Finally, the performance parameters of the Linear Discriminant Analysis (LDA) classifier are calculated with a 3-fold cross-validation technique. This study involves 11 healthy and 11 individuals with a knee abnormality for three different activities: walking, flexion of the leg up (standing), and leg extension from sitting position (sitting). Different pre-processing techniques similar to that of WD-EEMD were compared. It was observed that the proposed method achieves an average classification accuracy of 90.69% and 97.45% for healthy subjects and knee abnormal subjects, respectively.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3095594</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Activity recognition ; Biomedical signal analysis ; Classification ; Discriminant analysis ; Electromyography ; EMG classification ; Empirical analysis ; ensemble empirical mode decomposition ; Exoskeletons ; Feature extraction ; Filtration ; gait activities ; Knee ; Legged locomotion ; linear discriminant analysis ; Muscles ; Neuromuscular diseases ; Power lines ; Prosthetics ; Random noise ; Signal processing ; Sitting position ; wavelet denoising ; WD-EEMD</subject><ispartof>IEEE sensors journal, 2021-09, Vol.21 (18), p.20431-20439</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-8f853fdf053a979d5f9ee575bcdc46f445d43bd7d0305a7e25feda65472327053</citedby><cites>FETCH-LOGICAL-c363t-8f853fdf053a979d5f9ee575bcdc46f445d43bd7d0305a7e25feda65472327053</cites><orcidid>0000-0001-8437-498X ; 0000-0001-7603-6526 ; 0000-0002-4655-2324 ; 0000-0003-1436-8159 ; 0000-0002-6019-0702</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9477576$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9477576$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vijayvargiya, Ankit</creatorcontrib><creatorcontrib>Gupta, Vishu</creatorcontrib><creatorcontrib>Kumar, Rajesh</creatorcontrib><creatorcontrib>Dey, Nilanjan</creatorcontrib><creatorcontrib>Tavares, Joao Manuel R. S.</creatorcontrib><title>A Hybrid WD-EEMD sEMG Feature Extraction Technique for Lower Limb Activity Recognition</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Classification and analysis of surface EMG (sEMG) signals have been of particular interest due to their numerous applications in the biomedical field. They can be used for the diagnosis of neuromuscular diseases, kinesiological studies, and human-machine interaction. However, these signals are difficult to process due to their noisy nature. To overcome this problem, a hybrid of wavelet with ensemble empirical mode decomposition pre-processing technique called WD-EEMD is proposed for classifying lower limb activities based on sEMG signals in healthy and knee abnormal subjects. First, Wavelet De-noising is used for filtering out white Gaussian Noise (WGN) and unwanted signals (contribution of other muscle signals). Next, an Ensemble Empirical Mode Decomposition is used for filtering out power line interference (PLI) and baseline wandering (BW) noises, followed by extraction of a total of nine time-domain features. Finally, the performance parameters of the Linear Discriminant Analysis (LDA) classifier are calculated with a 3-fold cross-validation technique. This study involves 11 healthy and 11 individuals with a knee abnormality for three different activities: walking, flexion of the leg up (standing), and leg extension from sitting position (sitting). Different pre-processing techniques similar to that of WD-EEMD were compared. It was observed that the proposed method achieves an average classification accuracy of 90.69% and 97.45% for healthy subjects and knee abnormal subjects, respectively.</description><subject>Activity recognition</subject><subject>Biomedical signal analysis</subject><subject>Classification</subject><subject>Discriminant analysis</subject><subject>Electromyography</subject><subject>EMG classification</subject><subject>Empirical analysis</subject><subject>ensemble empirical mode decomposition</subject><subject>Exoskeletons</subject><subject>Feature extraction</subject><subject>Filtration</subject><subject>gait activities</subject><subject>Knee</subject><subject>Legged locomotion</subject><subject>linear discriminant analysis</subject><subject>Muscles</subject><subject>Neuromuscular diseases</subject><subject>Power lines</subject><subject>Prosthetics</subject><subject>Random noise</subject><subject>Signal processing</subject><subject>Sitting position</subject><subject>wavelet denoising</subject><subject>WD-EEMD</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1PwjAUhhujiYj-AONNE6-H7dqu6yWBARrQRPHjrtnWUy2RDbuh8u_tAvGmp8l53nNOHoQuKRlQStTN3VN2P4hJTAeMKCEUP0I9KkQaUcnT4-7PSMSZfDtFZ02zIoQqKWQPvQzxbFd4Z_DrOMqyxRg32WKKJ5C3Ww84-219XraurvASyo_KfW0B29rjef0D4XXrAg9D_9u1O_wIZf1euY4-Ryc2_2zg4lD76HmSLUezaP4wvR0N51HJEtZGqU0Fs8YSwXIllRFWAQgpitKUPLGcC8NZYaQhjIhcQiwsmDwRXMYsliHVR9f7uRtfh9OaVq_qra_CSh0LGSeSpIQGiu6p0tdN48HqjXfr3O80JbrTpzt9utOnD_pC5mqfcQDwzysug7aE_QF7XGpP</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Vijayvargiya, Ankit</creator><creator>Gupta, Vishu</creator><creator>Kumar, Rajesh</creator><creator>Dey, Nilanjan</creator><creator>Tavares, Joao Manuel R. S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8437-498X</orcidid><orcidid>https://orcid.org/0000-0001-7603-6526</orcidid><orcidid>https://orcid.org/0000-0002-4655-2324</orcidid><orcidid>https://orcid.org/0000-0003-1436-8159</orcidid><orcidid>https://orcid.org/0000-0002-6019-0702</orcidid></search><sort><creationdate>20210915</creationdate><title>A Hybrid WD-EEMD sEMG Feature Extraction Technique for Lower Limb Activity Recognition</title><author>Vijayvargiya, Ankit ; Gupta, Vishu ; Kumar, Rajesh ; Dey, Nilanjan ; Tavares, Joao Manuel R. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-8f853fdf053a979d5f9ee575bcdc46f445d43bd7d0305a7e25feda65472327053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activity recognition</topic><topic>Biomedical signal analysis</topic><topic>Classification</topic><topic>Discriminant analysis</topic><topic>Electromyography</topic><topic>EMG classification</topic><topic>Empirical analysis</topic><topic>ensemble empirical mode decomposition</topic><topic>Exoskeletons</topic><topic>Feature extraction</topic><topic>Filtration</topic><topic>gait activities</topic><topic>Knee</topic><topic>Legged locomotion</topic><topic>linear discriminant analysis</topic><topic>Muscles</topic><topic>Neuromuscular diseases</topic><topic>Power lines</topic><topic>Prosthetics</topic><topic>Random noise</topic><topic>Signal processing</topic><topic>Sitting position</topic><topic>wavelet denoising</topic><topic>WD-EEMD</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vijayvargiya, Ankit</creatorcontrib><creatorcontrib>Gupta, Vishu</creatorcontrib><creatorcontrib>Kumar, Rajesh</creatorcontrib><creatorcontrib>Dey, Nilanjan</creatorcontrib><creatorcontrib>Tavares, Joao Manuel R. S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vijayvargiya, Ankit</au><au>Gupta, Vishu</au><au>Kumar, Rajesh</au><au>Dey, Nilanjan</au><au>Tavares, Joao Manuel R. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid WD-EEMD sEMG Feature Extraction Technique for Lower Limb Activity Recognition</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-09-15</date><risdate>2021</risdate><volume>21</volume><issue>18</issue><spage>20431</spage><epage>20439</epage><pages>20431-20439</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Classification and analysis of surface EMG (sEMG) signals have been of particular interest due to their numerous applications in the biomedical field. They can be used for the diagnosis of neuromuscular diseases, kinesiological studies, and human-machine interaction. However, these signals are difficult to process due to their noisy nature. To overcome this problem, a hybrid of wavelet with ensemble empirical mode decomposition pre-processing technique called WD-EEMD is proposed for classifying lower limb activities based on sEMG signals in healthy and knee abnormal subjects. First, Wavelet De-noising is used for filtering out white Gaussian Noise (WGN) and unwanted signals (contribution of other muscle signals). Next, an Ensemble Empirical Mode Decomposition is used for filtering out power line interference (PLI) and baseline wandering (BW) noises, followed by extraction of a total of nine time-domain features. Finally, the performance parameters of the Linear Discriminant Analysis (LDA) classifier are calculated with a 3-fold cross-validation technique. This study involves 11 healthy and 11 individuals with a knee abnormality for three different activities: walking, flexion of the leg up (standing), and leg extension from sitting position (sitting). Different pre-processing techniques similar to that of WD-EEMD were compared. It was observed that the proposed method achieves an average classification accuracy of 90.69% and 97.45% for healthy subjects and knee abnormal subjects, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3095594</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8437-498X</orcidid><orcidid>https://orcid.org/0000-0001-7603-6526</orcidid><orcidid>https://orcid.org/0000-0002-4655-2324</orcidid><orcidid>https://orcid.org/0000-0003-1436-8159</orcidid><orcidid>https://orcid.org/0000-0002-6019-0702</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2021-09, Vol.21 (18), p.20431-20439 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_2572670801 |
source | IEEE Electronic Library (IEL) |
subjects | Activity recognition Biomedical signal analysis Classification Discriminant analysis Electromyography EMG classification Empirical analysis ensemble empirical mode decomposition Exoskeletons Feature extraction Filtration gait activities Knee Legged locomotion linear discriminant analysis Muscles Neuromuscular diseases Power lines Prosthetics Random noise Signal processing Sitting position wavelet denoising WD-EEMD |
title | A Hybrid WD-EEMD sEMG Feature Extraction Technique for Lower Limb Activity Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T00%3A17%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20WD-EEMD%20sEMG%20Feature%20Extraction%20Technique%20for%20Lower%20Limb%20Activity%20Recognition&rft.jtitle=IEEE%20sensors%20journal&rft.au=Vijayvargiya,%20Ankit&rft.date=2021-09-15&rft.volume=21&rft.issue=18&rft.spage=20431&rft.epage=20439&rft.pages=20431-20439&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3095594&rft_dat=%3Cproquest_RIE%3E2572670801%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572670801&rft_id=info:pmid/&rft_ieee_id=9477576&rfr_iscdi=true |