Rate Splitting Multiple Access in C-RAN: A Scalable and Robust Design

Cloud radio access networks (C-RAN) enable a network platform for beyond the fifth generation of communication networks (B5G), which incorporates the advances in cloud computing technologies to modern radio access networks. Recently, rate splitting multiple access (RSMA), relying on multi-antenna ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2021-09, Vol.69 (9), p.5727-5743
Hauptverfasser: Ahmad, Alaa Alameer, Mao, Yijie, Sezgin, Aydin, Clerckx, Bruno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5743
container_issue 9
container_start_page 5727
container_title IEEE transactions on communications
container_volume 69
creator Ahmad, Alaa Alameer
Mao, Yijie
Sezgin, Aydin
Clerckx, Bruno
description Cloud radio access networks (C-RAN) enable a network platform for beyond the fifth generation of communication networks (B5G), which incorporates the advances in cloud computing technologies to modern radio access networks. Recently, rate splitting multiple access (RSMA), relying on multi-antenna rate splitting (RS) at the transmitter and successive interference cancellation (SIC) at the receivers, has been shown to manage the interference in multi-antenna communication networks efficiently. This paper considers applying RSMA in C-RAN. We address the practical challenge of a transmitter that only knows the statistical channel state information (CSI) of the users. To this end, the paper investigates the problem of stochastic coordinated beamforming (SCB) optimization to maximize the ergodic sum-rate (ESR) in the network. Furthermore, we propose a scalable and robust RS scheme where the number of the common streams to be decoded at each user scales linearly with the number of users, and the common stream selection only depends on the statistical CSI. The setup leads to a challenging stochastic and non-convex optimization problem. A sample average approximation (SAA) and weighted minimum mean square error (WMMSE) based algorithm is adopted to tackle the intractable stochastic non-convex optimization and guarantee convergence to a stationary point asymptotically. The numerical simulations demonstrate the efficiency of the proposed RS strategy and show a gain up to 27% in the achievable ESR compared with state-of-the-art schemes, namely treating interference as noise (TIN) and non-orthogonal multiple access (NOMA) schemes.
doi_str_mv 10.1109/TCOMM.2021.3085343
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2572670433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9445019</ieee_id><sourcerecordid>2572670433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-1a088181dc7815ab80fe1e437447d588ca6b02c33fffafb93baa532b7bd2961d3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7CxxDpl_IoddlEoD6mlUlvWlu04VaqQhDhZ9O9JacVqdDX3zEgHoXsCM0Igedpmq-VyRoGSGQMlGGcXaEKEUNGY5CWaACQQxVKqa3QTwh4AODA2QfO16T3etFXZ92W9w8uh6su28jh1zoeAyxpn0Tr9fMYp3jhTGTvuTJ3jdWOH0OMXH8pdfYuuClMFf3eeU_T1Ot9m79Fi9faRpYvIMc77iBhQiiiSO6mIMFZB4YnnTHIuc6GUM7EF6hgrisIUNmHWGMGolTanSUxyNkWPp7tt1_wMPvR63wxdPb7UVEgaS-CMjS16armuCaHzhW678tt0B01AH3XpP136qEufdY3Qwwkqvff_QMK5AJKwX-QqZFk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572670433</pqid></control><display><type>article</type><title>Rate Splitting Multiple Access in C-RAN: A Scalable and Robust Design</title><source>IEEE Electronic Library (IEL)</source><creator>Ahmad, Alaa Alameer ; Mao, Yijie ; Sezgin, Aydin ; Clerckx, Bruno</creator><creatorcontrib>Ahmad, Alaa Alameer ; Mao, Yijie ; Sezgin, Aydin ; Clerckx, Bruno</creatorcontrib><description>Cloud radio access networks (C-RAN) enable a network platform for beyond the fifth generation of communication networks (B5G), which incorporates the advances in cloud computing technologies to modern radio access networks. Recently, rate splitting multiple access (RSMA), relying on multi-antenna rate splitting (RS) at the transmitter and successive interference cancellation (SIC) at the receivers, has been shown to manage the interference in multi-antenna communication networks efficiently. This paper considers applying RSMA in C-RAN. We address the practical challenge of a transmitter that only knows the statistical channel state information (CSI) of the users. To this end, the paper investigates the problem of stochastic coordinated beamforming (SCB) optimization to maximize the ergodic sum-rate (ESR) in the network. Furthermore, we propose a scalable and robust RS scheme where the number of the common streams to be decoded at each user scales linearly with the number of users, and the common stream selection only depends on the statistical CSI. The setup leads to a challenging stochastic and non-convex optimization problem. A sample average approximation (SAA) and weighted minimum mean square error (WMMSE) based algorithm is adopted to tackle the intractable stochastic non-convex optimization and guarantee convergence to a stationary point asymptotically. The numerical simulations demonstrate the efficiency of the proposed RS strategy and show a gain up to 27% in the achievable ESR compared with state-of-the-art schemes, namely treating interference as noise (TIN) and non-orthogonal multiple access (NOMA) schemes.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2021.3085343</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Antennas ; Array signal processing ; Beamforming ; Channel estimation ; Cloud computing ; cloud-radio access network (C-RAN) ; Communication networks ; Communications networks ; Computational geometry ; Convex analysis ; Convexity ; imperfect channel state information (CSI) ; Integrated circuits ; Interference ; Interference suppression ; Mathematical analysis ; multiple-input multiple-output (MIMO) ; Nonorthogonal multiple access ; Optimization ; rate-splitting multiple access (RSMA) ; Robust design ; Splitting ; Tin ; Uncertainty</subject><ispartof>IEEE transactions on communications, 2021-09, Vol.69 (9), p.5727-5743</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-1a088181dc7815ab80fe1e437447d588ca6b02c33fffafb93baa532b7bd2961d3</citedby><cites>FETCH-LOGICAL-c344t-1a088181dc7815ab80fe1e437447d588ca6b02c33fffafb93baa532b7bd2961d3</cites><orcidid>0000-0002-0764-5560 ; 0000-0001-5077-2998 ; 0000-0003-3511-2662 ; 0000-0001-5949-6459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9445019$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9445019$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ahmad, Alaa Alameer</creatorcontrib><creatorcontrib>Mao, Yijie</creatorcontrib><creatorcontrib>Sezgin, Aydin</creatorcontrib><creatorcontrib>Clerckx, Bruno</creatorcontrib><title>Rate Splitting Multiple Access in C-RAN: A Scalable and Robust Design</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>Cloud radio access networks (C-RAN) enable a network platform for beyond the fifth generation of communication networks (B5G), which incorporates the advances in cloud computing technologies to modern radio access networks. Recently, rate splitting multiple access (RSMA), relying on multi-antenna rate splitting (RS) at the transmitter and successive interference cancellation (SIC) at the receivers, has been shown to manage the interference in multi-antenna communication networks efficiently. This paper considers applying RSMA in C-RAN. We address the practical challenge of a transmitter that only knows the statistical channel state information (CSI) of the users. To this end, the paper investigates the problem of stochastic coordinated beamforming (SCB) optimization to maximize the ergodic sum-rate (ESR) in the network. Furthermore, we propose a scalable and robust RS scheme where the number of the common streams to be decoded at each user scales linearly with the number of users, and the common stream selection only depends on the statistical CSI. The setup leads to a challenging stochastic and non-convex optimization problem. A sample average approximation (SAA) and weighted minimum mean square error (WMMSE) based algorithm is adopted to tackle the intractable stochastic non-convex optimization and guarantee convergence to a stationary point asymptotically. The numerical simulations demonstrate the efficiency of the proposed RS strategy and show a gain up to 27% in the achievable ESR compared with state-of-the-art schemes, namely treating interference as noise (TIN) and non-orthogonal multiple access (NOMA) schemes.</description><subject>Algorithms</subject><subject>Antennas</subject><subject>Array signal processing</subject><subject>Beamforming</subject><subject>Channel estimation</subject><subject>Cloud computing</subject><subject>cloud-radio access network (C-RAN)</subject><subject>Communication networks</subject><subject>Communications networks</subject><subject>Computational geometry</subject><subject>Convex analysis</subject><subject>Convexity</subject><subject>imperfect channel state information (CSI)</subject><subject>Integrated circuits</subject><subject>Interference</subject><subject>Interference suppression</subject><subject>Mathematical analysis</subject><subject>multiple-input multiple-output (MIMO)</subject><subject>Nonorthogonal multiple access</subject><subject>Optimization</subject><subject>rate-splitting multiple access (RSMA)</subject><subject>Robust design</subject><subject>Splitting</subject><subject>Tin</subject><subject>Uncertainty</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwA7CxxDpl_IoddlEoD6mlUlvWlu04VaqQhDhZ9O9JacVqdDX3zEgHoXsCM0Igedpmq-VyRoGSGQMlGGcXaEKEUNGY5CWaACQQxVKqa3QTwh4AODA2QfO16T3etFXZ92W9w8uh6su28jh1zoeAyxpn0Tr9fMYp3jhTGTvuTJ3jdWOH0OMXH8pdfYuuClMFf3eeU_T1Ot9m79Fi9faRpYvIMc77iBhQiiiSO6mIMFZB4YnnTHIuc6GUM7EF6hgrisIUNmHWGMGolTanSUxyNkWPp7tt1_wMPvR63wxdPb7UVEgaS-CMjS16armuCaHzhW678tt0B01AH3XpP136qEufdY3Qwwkqvff_QMK5AJKwX-QqZFk</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Ahmad, Alaa Alameer</creator><creator>Mao, Yijie</creator><creator>Sezgin, Aydin</creator><creator>Clerckx, Bruno</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0764-5560</orcidid><orcidid>https://orcid.org/0000-0001-5077-2998</orcidid><orcidid>https://orcid.org/0000-0003-3511-2662</orcidid><orcidid>https://orcid.org/0000-0001-5949-6459</orcidid></search><sort><creationdate>20210901</creationdate><title>Rate Splitting Multiple Access in C-RAN: A Scalable and Robust Design</title><author>Ahmad, Alaa Alameer ; Mao, Yijie ; Sezgin, Aydin ; Clerckx, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-1a088181dc7815ab80fe1e437447d588ca6b02c33fffafb93baa532b7bd2961d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Antennas</topic><topic>Array signal processing</topic><topic>Beamforming</topic><topic>Channel estimation</topic><topic>Cloud computing</topic><topic>cloud-radio access network (C-RAN)</topic><topic>Communication networks</topic><topic>Communications networks</topic><topic>Computational geometry</topic><topic>Convex analysis</topic><topic>Convexity</topic><topic>imperfect channel state information (CSI)</topic><topic>Integrated circuits</topic><topic>Interference</topic><topic>Interference suppression</topic><topic>Mathematical analysis</topic><topic>multiple-input multiple-output (MIMO)</topic><topic>Nonorthogonal multiple access</topic><topic>Optimization</topic><topic>rate-splitting multiple access (RSMA)</topic><topic>Robust design</topic><topic>Splitting</topic><topic>Tin</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmad, Alaa Alameer</creatorcontrib><creatorcontrib>Mao, Yijie</creatorcontrib><creatorcontrib>Sezgin, Aydin</creatorcontrib><creatorcontrib>Clerckx, Bruno</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ahmad, Alaa Alameer</au><au>Mao, Yijie</au><au>Sezgin, Aydin</au><au>Clerckx, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rate Splitting Multiple Access in C-RAN: A Scalable and Robust Design</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>69</volume><issue>9</issue><spage>5727</spage><epage>5743</epage><pages>5727-5743</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>Cloud radio access networks (C-RAN) enable a network platform for beyond the fifth generation of communication networks (B5G), which incorporates the advances in cloud computing technologies to modern radio access networks. Recently, rate splitting multiple access (RSMA), relying on multi-antenna rate splitting (RS) at the transmitter and successive interference cancellation (SIC) at the receivers, has been shown to manage the interference in multi-antenna communication networks efficiently. This paper considers applying RSMA in C-RAN. We address the practical challenge of a transmitter that only knows the statistical channel state information (CSI) of the users. To this end, the paper investigates the problem of stochastic coordinated beamforming (SCB) optimization to maximize the ergodic sum-rate (ESR) in the network. Furthermore, we propose a scalable and robust RS scheme where the number of the common streams to be decoded at each user scales linearly with the number of users, and the common stream selection only depends on the statistical CSI. The setup leads to a challenging stochastic and non-convex optimization problem. A sample average approximation (SAA) and weighted minimum mean square error (WMMSE) based algorithm is adopted to tackle the intractable stochastic non-convex optimization and guarantee convergence to a stationary point asymptotically. The numerical simulations demonstrate the efficiency of the proposed RS strategy and show a gain up to 27% in the achievable ESR compared with state-of-the-art schemes, namely treating interference as noise (TIN) and non-orthogonal multiple access (NOMA) schemes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2021.3085343</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0764-5560</orcidid><orcidid>https://orcid.org/0000-0001-5077-2998</orcidid><orcidid>https://orcid.org/0000-0003-3511-2662</orcidid><orcidid>https://orcid.org/0000-0001-5949-6459</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2021-09, Vol.69 (9), p.5727-5743
issn 0090-6778
1558-0857
language eng
recordid cdi_proquest_journals_2572670433
source IEEE Electronic Library (IEL)
subjects Algorithms
Antennas
Array signal processing
Beamforming
Channel estimation
Cloud computing
cloud-radio access network (C-RAN)
Communication networks
Communications networks
Computational geometry
Convex analysis
Convexity
imperfect channel state information (CSI)
Integrated circuits
Interference
Interference suppression
Mathematical analysis
multiple-input multiple-output (MIMO)
Nonorthogonal multiple access
Optimization
rate-splitting multiple access (RSMA)
Robust design
Splitting
Tin
Uncertainty
title Rate Splitting Multiple Access in C-RAN: A Scalable and Robust Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A25%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rate%20Splitting%20Multiple%20Access%20in%20C-RAN:%20A%20Scalable%20and%20Robust%20Design&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Ahmad,%20Alaa%20Alameer&rft.date=2021-09-01&rft.volume=69&rft.issue=9&rft.spage=5727&rft.epage=5743&rft.pages=5727-5743&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2021.3085343&rft_dat=%3Cproquest_RIE%3E2572670433%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572670433&rft_id=info:pmid/&rft_ieee_id=9445019&rfr_iscdi=true