Rate Splitting Multiple Access in C-RAN: A Scalable and Robust Design
Cloud radio access networks (C-RAN) enable a network platform for beyond the fifth generation of communication networks (B5G), which incorporates the advances in cloud computing technologies to modern radio access networks. Recently, rate splitting multiple access (RSMA), relying on multi-antenna ra...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 2021-09, Vol.69 (9), p.5727-5743 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5743 |
---|---|
container_issue | 9 |
container_start_page | 5727 |
container_title | IEEE transactions on communications |
container_volume | 69 |
creator | Ahmad, Alaa Alameer Mao, Yijie Sezgin, Aydin Clerckx, Bruno |
description | Cloud radio access networks (C-RAN) enable a network platform for beyond the fifth generation of communication networks (B5G), which incorporates the advances in cloud computing technologies to modern radio access networks. Recently, rate splitting multiple access (RSMA), relying on multi-antenna rate splitting (RS) at the transmitter and successive interference cancellation (SIC) at the receivers, has been shown to manage the interference in multi-antenna communication networks efficiently. This paper considers applying RSMA in C-RAN. We address the practical challenge of a transmitter that only knows the statistical channel state information (CSI) of the users. To this end, the paper investigates the problem of stochastic coordinated beamforming (SCB) optimization to maximize the ergodic sum-rate (ESR) in the network. Furthermore, we propose a scalable and robust RS scheme where the number of the common streams to be decoded at each user scales linearly with the number of users, and the common stream selection only depends on the statistical CSI. The setup leads to a challenging stochastic and non-convex optimization problem. A sample average approximation (SAA) and weighted minimum mean square error (WMMSE) based algorithm is adopted to tackle the intractable stochastic non-convex optimization and guarantee convergence to a stationary point asymptotically. The numerical simulations demonstrate the efficiency of the proposed RS strategy and show a gain up to 27% in the achievable ESR compared with state-of-the-art schemes, namely treating interference as noise (TIN) and non-orthogonal multiple access (NOMA) schemes. |
doi_str_mv | 10.1109/TCOMM.2021.3085343 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2572670433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9445019</ieee_id><sourcerecordid>2572670433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-1a088181dc7815ab80fe1e437447d588ca6b02c33fffafb93baa532b7bd2961d3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7CxxDpl_IoddlEoD6mlUlvWlu04VaqQhDhZ9O9JacVqdDX3zEgHoXsCM0Igedpmq-VyRoGSGQMlGGcXaEKEUNGY5CWaACQQxVKqa3QTwh4AODA2QfO16T3etFXZ92W9w8uh6su28jh1zoeAyxpn0Tr9fMYp3jhTGTvuTJ3jdWOH0OMXH8pdfYuuClMFf3eeU_T1Ot9m79Fi9faRpYvIMc77iBhQiiiSO6mIMFZB4YnnTHIuc6GUM7EF6hgrisIUNmHWGMGolTanSUxyNkWPp7tt1_wMPvR63wxdPb7UVEgaS-CMjS16armuCaHzhW678tt0B01AH3XpP136qEufdY3Qwwkqvff_QMK5AJKwX-QqZFk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572670433</pqid></control><display><type>article</type><title>Rate Splitting Multiple Access in C-RAN: A Scalable and Robust Design</title><source>IEEE Electronic Library (IEL)</source><creator>Ahmad, Alaa Alameer ; Mao, Yijie ; Sezgin, Aydin ; Clerckx, Bruno</creator><creatorcontrib>Ahmad, Alaa Alameer ; Mao, Yijie ; Sezgin, Aydin ; Clerckx, Bruno</creatorcontrib><description>Cloud radio access networks (C-RAN) enable a network platform for beyond the fifth generation of communication networks (B5G), which incorporates the advances in cloud computing technologies to modern radio access networks. Recently, rate splitting multiple access (RSMA), relying on multi-antenna rate splitting (RS) at the transmitter and successive interference cancellation (SIC) at the receivers, has been shown to manage the interference in multi-antenna communication networks efficiently. This paper considers applying RSMA in C-RAN. We address the practical challenge of a transmitter that only knows the statistical channel state information (CSI) of the users. To this end, the paper investigates the problem of stochastic coordinated beamforming (SCB) optimization to maximize the ergodic sum-rate (ESR) in the network. Furthermore, we propose a scalable and robust RS scheme where the number of the common streams to be decoded at each user scales linearly with the number of users, and the common stream selection only depends on the statistical CSI. The setup leads to a challenging stochastic and non-convex optimization problem. A sample average approximation (SAA) and weighted minimum mean square error (WMMSE) based algorithm is adopted to tackle the intractable stochastic non-convex optimization and guarantee convergence to a stationary point asymptotically. The numerical simulations demonstrate the efficiency of the proposed RS strategy and show a gain up to 27% in the achievable ESR compared with state-of-the-art schemes, namely treating interference as noise (TIN) and non-orthogonal multiple access (NOMA) schemes.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2021.3085343</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Antennas ; Array signal processing ; Beamforming ; Channel estimation ; Cloud computing ; cloud-radio access network (C-RAN) ; Communication networks ; Communications networks ; Computational geometry ; Convex analysis ; Convexity ; imperfect channel state information (CSI) ; Integrated circuits ; Interference ; Interference suppression ; Mathematical analysis ; multiple-input multiple-output (MIMO) ; Nonorthogonal multiple access ; Optimization ; rate-splitting multiple access (RSMA) ; Robust design ; Splitting ; Tin ; Uncertainty</subject><ispartof>IEEE transactions on communications, 2021-09, Vol.69 (9), p.5727-5743</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-1a088181dc7815ab80fe1e437447d588ca6b02c33fffafb93baa532b7bd2961d3</citedby><cites>FETCH-LOGICAL-c344t-1a088181dc7815ab80fe1e437447d588ca6b02c33fffafb93baa532b7bd2961d3</cites><orcidid>0000-0002-0764-5560 ; 0000-0001-5077-2998 ; 0000-0003-3511-2662 ; 0000-0001-5949-6459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9445019$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9445019$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ahmad, Alaa Alameer</creatorcontrib><creatorcontrib>Mao, Yijie</creatorcontrib><creatorcontrib>Sezgin, Aydin</creatorcontrib><creatorcontrib>Clerckx, Bruno</creatorcontrib><title>Rate Splitting Multiple Access in C-RAN: A Scalable and Robust Design</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>Cloud radio access networks (C-RAN) enable a network platform for beyond the fifth generation of communication networks (B5G), which incorporates the advances in cloud computing technologies to modern radio access networks. Recently, rate splitting multiple access (RSMA), relying on multi-antenna rate splitting (RS) at the transmitter and successive interference cancellation (SIC) at the receivers, has been shown to manage the interference in multi-antenna communication networks efficiently. This paper considers applying RSMA in C-RAN. We address the practical challenge of a transmitter that only knows the statistical channel state information (CSI) of the users. To this end, the paper investigates the problem of stochastic coordinated beamforming (SCB) optimization to maximize the ergodic sum-rate (ESR) in the network. Furthermore, we propose a scalable and robust RS scheme where the number of the common streams to be decoded at each user scales linearly with the number of users, and the common stream selection only depends on the statistical CSI. The setup leads to a challenging stochastic and non-convex optimization problem. A sample average approximation (SAA) and weighted minimum mean square error (WMMSE) based algorithm is adopted to tackle the intractable stochastic non-convex optimization and guarantee convergence to a stationary point asymptotically. The numerical simulations demonstrate the efficiency of the proposed RS strategy and show a gain up to 27% in the achievable ESR compared with state-of-the-art schemes, namely treating interference as noise (TIN) and non-orthogonal multiple access (NOMA) schemes.</description><subject>Algorithms</subject><subject>Antennas</subject><subject>Array signal processing</subject><subject>Beamforming</subject><subject>Channel estimation</subject><subject>Cloud computing</subject><subject>cloud-radio access network (C-RAN)</subject><subject>Communication networks</subject><subject>Communications networks</subject><subject>Computational geometry</subject><subject>Convex analysis</subject><subject>Convexity</subject><subject>imperfect channel state information (CSI)</subject><subject>Integrated circuits</subject><subject>Interference</subject><subject>Interference suppression</subject><subject>Mathematical analysis</subject><subject>multiple-input multiple-output (MIMO)</subject><subject>Nonorthogonal multiple access</subject><subject>Optimization</subject><subject>rate-splitting multiple access (RSMA)</subject><subject>Robust design</subject><subject>Splitting</subject><subject>Tin</subject><subject>Uncertainty</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwA7CxxDpl_IoddlEoD6mlUlvWlu04VaqQhDhZ9O9JacVqdDX3zEgHoXsCM0Igedpmq-VyRoGSGQMlGGcXaEKEUNGY5CWaACQQxVKqa3QTwh4AODA2QfO16T3etFXZ92W9w8uh6su28jh1zoeAyxpn0Tr9fMYp3jhTGTvuTJ3jdWOH0OMXH8pdfYuuClMFf3eeU_T1Ot9m79Fi9faRpYvIMc77iBhQiiiSO6mIMFZB4YnnTHIuc6GUM7EF6hgrisIUNmHWGMGolTanSUxyNkWPp7tt1_wMPvR63wxdPb7UVEgaS-CMjS16armuCaHzhW678tt0B01AH3XpP136qEufdY3Qwwkqvff_QMK5AJKwX-QqZFk</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Ahmad, Alaa Alameer</creator><creator>Mao, Yijie</creator><creator>Sezgin, Aydin</creator><creator>Clerckx, Bruno</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0764-5560</orcidid><orcidid>https://orcid.org/0000-0001-5077-2998</orcidid><orcidid>https://orcid.org/0000-0003-3511-2662</orcidid><orcidid>https://orcid.org/0000-0001-5949-6459</orcidid></search><sort><creationdate>20210901</creationdate><title>Rate Splitting Multiple Access in C-RAN: A Scalable and Robust Design</title><author>Ahmad, Alaa Alameer ; Mao, Yijie ; Sezgin, Aydin ; Clerckx, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-1a088181dc7815ab80fe1e437447d588ca6b02c33fffafb93baa532b7bd2961d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Antennas</topic><topic>Array signal processing</topic><topic>Beamforming</topic><topic>Channel estimation</topic><topic>Cloud computing</topic><topic>cloud-radio access network (C-RAN)</topic><topic>Communication networks</topic><topic>Communications networks</topic><topic>Computational geometry</topic><topic>Convex analysis</topic><topic>Convexity</topic><topic>imperfect channel state information (CSI)</topic><topic>Integrated circuits</topic><topic>Interference</topic><topic>Interference suppression</topic><topic>Mathematical analysis</topic><topic>multiple-input multiple-output (MIMO)</topic><topic>Nonorthogonal multiple access</topic><topic>Optimization</topic><topic>rate-splitting multiple access (RSMA)</topic><topic>Robust design</topic><topic>Splitting</topic><topic>Tin</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmad, Alaa Alameer</creatorcontrib><creatorcontrib>Mao, Yijie</creatorcontrib><creatorcontrib>Sezgin, Aydin</creatorcontrib><creatorcontrib>Clerckx, Bruno</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ahmad, Alaa Alameer</au><au>Mao, Yijie</au><au>Sezgin, Aydin</au><au>Clerckx, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rate Splitting Multiple Access in C-RAN: A Scalable and Robust Design</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>69</volume><issue>9</issue><spage>5727</spage><epage>5743</epage><pages>5727-5743</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>Cloud radio access networks (C-RAN) enable a network platform for beyond the fifth generation of communication networks (B5G), which incorporates the advances in cloud computing technologies to modern radio access networks. Recently, rate splitting multiple access (RSMA), relying on multi-antenna rate splitting (RS) at the transmitter and successive interference cancellation (SIC) at the receivers, has been shown to manage the interference in multi-antenna communication networks efficiently. This paper considers applying RSMA in C-RAN. We address the practical challenge of a transmitter that only knows the statistical channel state information (CSI) of the users. To this end, the paper investigates the problem of stochastic coordinated beamforming (SCB) optimization to maximize the ergodic sum-rate (ESR) in the network. Furthermore, we propose a scalable and robust RS scheme where the number of the common streams to be decoded at each user scales linearly with the number of users, and the common stream selection only depends on the statistical CSI. The setup leads to a challenging stochastic and non-convex optimization problem. A sample average approximation (SAA) and weighted minimum mean square error (WMMSE) based algorithm is adopted to tackle the intractable stochastic non-convex optimization and guarantee convergence to a stationary point asymptotically. The numerical simulations demonstrate the efficiency of the proposed RS strategy and show a gain up to 27% in the achievable ESR compared with state-of-the-art schemes, namely treating interference as noise (TIN) and non-orthogonal multiple access (NOMA) schemes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2021.3085343</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0764-5560</orcidid><orcidid>https://orcid.org/0000-0001-5077-2998</orcidid><orcidid>https://orcid.org/0000-0003-3511-2662</orcidid><orcidid>https://orcid.org/0000-0001-5949-6459</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2021-09, Vol.69 (9), p.5727-5743 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_proquest_journals_2572670433 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Antennas Array signal processing Beamforming Channel estimation Cloud computing cloud-radio access network (C-RAN) Communication networks Communications networks Computational geometry Convex analysis Convexity imperfect channel state information (CSI) Integrated circuits Interference Interference suppression Mathematical analysis multiple-input multiple-output (MIMO) Nonorthogonal multiple access Optimization rate-splitting multiple access (RSMA) Robust design Splitting Tin Uncertainty |
title | Rate Splitting Multiple Access in C-RAN: A Scalable and Robust Design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A25%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rate%20Splitting%20Multiple%20Access%20in%20C-RAN:%20A%20Scalable%20and%20Robust%20Design&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Ahmad,%20Alaa%20Alameer&rft.date=2021-09-01&rft.volume=69&rft.issue=9&rft.spage=5727&rft.epage=5743&rft.pages=5727-5743&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2021.3085343&rft_dat=%3Cproquest_RIE%3E2572670433%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572670433&rft_id=info:pmid/&rft_ieee_id=9445019&rfr_iscdi=true |