Combined effects of high energy ignition and tumble enhancement on performance of lean combustion for GDI engine

•The influence of ignition energy and tumble level on lean combustion is studied.•Particle image velocimetry is used to evaluate intake port tumble modification.•The arc development images and the exact arc area are considered.•High energy ignition extends the lean-burn limit, high tumble improves t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental thermal and fluid science 2021-11, Vol.129, p.110464, Article 110464
Hauptverfasser: Shen, Kai, Xu, Zishun, Chen, Hong, Du, Jiakun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 110464
container_title Experimental thermal and fluid science
container_volume 129
creator Shen, Kai
Xu, Zishun
Chen, Hong
Du, Jiakun
description •The influence of ignition energy and tumble level on lean combustion is studied.•Particle image velocimetry is used to evaluate intake port tumble modification.•The arc development images and the exact arc area are considered.•High energy ignition extends the lean-burn limit, high tumble improves the stability.•The advantages of high energy ignition is analyzed from the flame development images. Lean combustion can greatly improve the thermal efficiency of gasoline engine. Increasing ignition energy and tumble level can effectively expand its application range. Optical glass liner was used to clearly observe the in-cylinder state. Particle image velocimetry(PIV) was used for quantitative evaluation of tumble modification. The integral tumble ratio of the high tumble intake port is 1.67 times that of the basic intake port. Ignition energy was increased from 65 mJ to 300 mJ. Under the condition of no fuel injection, the duration of 300 mJ ignition arc is longer, and the peak arc area is about 4 times that of 65 mJ. The effects of ignition energy and tumble level on combustion stability, lean-burn limit, fuel economy and flame development were studied. The results show that high energy ignition can enlarge the lean-burn limit, but has no significant effect on combustion stability. High tumble has the opposite effect and can effectively improve fuel economy. The micro flame development images under the ultra-lean condition are different. The flame area of 300 mJ is larger and the combustion is more intense. High energy ignition contributes to the formation of initial flame kernel and flame propagation, so it can improve the lean-burn limit.
doi_str_mv 10.1016/j.expthermflusci.2021.110464
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2572611286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0894177721001126</els_id><sourcerecordid>2572611286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-e421bc0996323bbdd6d479615f8a2d44286b20a6ab75d2756193b3ad6e76f1b53</originalsourceid><addsrcrecordid>eNqNkM9LwzAUx4MoOKf_Q0CvnUnaJi14kenmYOBFzyFpXraMNa1JK-6_N3NevHl68L4_Hu-D0B0lM0oov9_N4KsfthBaux9j42aMMDqjlBS8OEMTWok6Y6zi52hCqrrIqBDiEl3FuCOEVIySCernXaudB4PBWmiGiDuLt26zxeAhbA7YbbwbXOex8gYPY6v3kKSt8g204AeclB6C7UJ7XB3Te1AeN6l2jD_BpOHl0yqlNunQNbqwah_h5ndO0fvi-W3-kq1fl6v54zpr8rIaMigY1Q2pa56zXGtjuClEzWlpK8VMUaSvNCOKKy1Kw0TJaZ3rXBkOgluqy3yKbk-9feg-RoiD3HVj8OmkZKVgnNJUkVwPJ1cTuhgDWNkH16pwkJTII2O5k38ZyyNjeWKc4otTHNInnw6CTA5IHIwLCaY0nftf0TcE847v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572611286</pqid></control><display><type>article</type><title>Combined effects of high energy ignition and tumble enhancement on performance of lean combustion for GDI engine</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Shen, Kai ; Xu, Zishun ; Chen, Hong ; Du, Jiakun</creator><creatorcontrib>Shen, Kai ; Xu, Zishun ; Chen, Hong ; Du, Jiakun</creatorcontrib><description>•The influence of ignition energy and tumble level on lean combustion is studied.•Particle image velocimetry is used to evaluate intake port tumble modification.•The arc development images and the exact arc area are considered.•High energy ignition extends the lean-burn limit, high tumble improves the stability.•The advantages of high energy ignition is analyzed from the flame development images. Lean combustion can greatly improve the thermal efficiency of gasoline engine. Increasing ignition energy and tumble level can effectively expand its application range. Optical glass liner was used to clearly observe the in-cylinder state. Particle image velocimetry(PIV) was used for quantitative evaluation of tumble modification. The integral tumble ratio of the high tumble intake port is 1.67 times that of the basic intake port. Ignition energy was increased from 65 mJ to 300 mJ. Under the condition of no fuel injection, the duration of 300 mJ ignition arc is longer, and the peak arc area is about 4 times that of 65 mJ. The effects of ignition energy and tumble level on combustion stability, lean-burn limit, fuel economy and flame development were studied. The results show that high energy ignition can enlarge the lean-burn limit, but has no significant effect on combustion stability. High tumble has the opposite effect and can effectively improve fuel economy. The micro flame development images under the ultra-lean condition are different. The flame area of 300 mJ is larger and the combustion is more intense. High energy ignition contributes to the formation of initial flame kernel and flame propagation, so it can improve the lean-burn limit.</description><identifier>ISSN: 0894-1777</identifier><identifier>EISSN: 1879-2286</identifier><identifier>DOI: 10.1016/j.expthermflusci.2021.110464</identifier><language>eng</language><publisher>Philadelphia: Elsevier Inc</publisher><subject>Combustion ; Combustion stability ; Energy ; Energy efficiency ; Flame development ; Flame propagation ; Fuel consumption ; Fuel economy ; Fuel injection ; Gasoline ; Gasoline engines ; Ignition ; Ignition energy ; Lean combustion ; Optical glass ; Particle image velocimetry ; Thermodynamic efficiency ; Tumble level</subject><ispartof>Experimental thermal and fluid science, 2021-11, Vol.129, p.110464, Article 110464</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Nov 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-e421bc0996323bbdd6d479615f8a2d44286b20a6ab75d2756193b3ad6e76f1b53</citedby><cites>FETCH-LOGICAL-c358t-e421bc0996323bbdd6d479615f8a2d44286b20a6ab75d2756193b3ad6e76f1b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0894177721001126$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Shen, Kai</creatorcontrib><creatorcontrib>Xu, Zishun</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Du, Jiakun</creatorcontrib><title>Combined effects of high energy ignition and tumble enhancement on performance of lean combustion for GDI engine</title><title>Experimental thermal and fluid science</title><description>•The influence of ignition energy and tumble level on lean combustion is studied.•Particle image velocimetry is used to evaluate intake port tumble modification.•The arc development images and the exact arc area are considered.•High energy ignition extends the lean-burn limit, high tumble improves the stability.•The advantages of high energy ignition is analyzed from the flame development images. Lean combustion can greatly improve the thermal efficiency of gasoline engine. Increasing ignition energy and tumble level can effectively expand its application range. Optical glass liner was used to clearly observe the in-cylinder state. Particle image velocimetry(PIV) was used for quantitative evaluation of tumble modification. The integral tumble ratio of the high tumble intake port is 1.67 times that of the basic intake port. Ignition energy was increased from 65 mJ to 300 mJ. Under the condition of no fuel injection, the duration of 300 mJ ignition arc is longer, and the peak arc area is about 4 times that of 65 mJ. The effects of ignition energy and tumble level on combustion stability, lean-burn limit, fuel economy and flame development were studied. The results show that high energy ignition can enlarge the lean-burn limit, but has no significant effect on combustion stability. High tumble has the opposite effect and can effectively improve fuel economy. The micro flame development images under the ultra-lean condition are different. The flame area of 300 mJ is larger and the combustion is more intense. High energy ignition contributes to the formation of initial flame kernel and flame propagation, so it can improve the lean-burn limit.</description><subject>Combustion</subject><subject>Combustion stability</subject><subject>Energy</subject><subject>Energy efficiency</subject><subject>Flame development</subject><subject>Flame propagation</subject><subject>Fuel consumption</subject><subject>Fuel economy</subject><subject>Fuel injection</subject><subject>Gasoline</subject><subject>Gasoline engines</subject><subject>Ignition</subject><subject>Ignition energy</subject><subject>Lean combustion</subject><subject>Optical glass</subject><subject>Particle image velocimetry</subject><subject>Thermodynamic efficiency</subject><subject>Tumble level</subject><issn>0894-1777</issn><issn>1879-2286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkM9LwzAUx4MoOKf_Q0CvnUnaJi14kenmYOBFzyFpXraMNa1JK-6_N3NevHl68L4_Hu-D0B0lM0oov9_N4KsfthBaux9j42aMMDqjlBS8OEMTWok6Y6zi52hCqrrIqBDiEl3FuCOEVIySCernXaudB4PBWmiGiDuLt26zxeAhbA7YbbwbXOex8gYPY6v3kKSt8g204AeclB6C7UJ7XB3Te1AeN6l2jD_BpOHl0yqlNunQNbqwah_h5ndO0fvi-W3-kq1fl6v54zpr8rIaMigY1Q2pa56zXGtjuClEzWlpK8VMUaSvNCOKKy1Kw0TJaZ3rXBkOgluqy3yKbk-9feg-RoiD3HVj8OmkZKVgnNJUkVwPJ1cTuhgDWNkH16pwkJTII2O5k38ZyyNjeWKc4otTHNInnw6CTA5IHIwLCaY0nftf0TcE847v</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Shen, Kai</creator><creator>Xu, Zishun</creator><creator>Chen, Hong</creator><creator>Du, Jiakun</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20211101</creationdate><title>Combined effects of high energy ignition and tumble enhancement on performance of lean combustion for GDI engine</title><author>Shen, Kai ; Xu, Zishun ; Chen, Hong ; Du, Jiakun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-e421bc0996323bbdd6d479615f8a2d44286b20a6ab75d2756193b3ad6e76f1b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Combustion</topic><topic>Combustion stability</topic><topic>Energy</topic><topic>Energy efficiency</topic><topic>Flame development</topic><topic>Flame propagation</topic><topic>Fuel consumption</topic><topic>Fuel economy</topic><topic>Fuel injection</topic><topic>Gasoline</topic><topic>Gasoline engines</topic><topic>Ignition</topic><topic>Ignition energy</topic><topic>Lean combustion</topic><topic>Optical glass</topic><topic>Particle image velocimetry</topic><topic>Thermodynamic efficiency</topic><topic>Tumble level</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Kai</creatorcontrib><creatorcontrib>Xu, Zishun</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Du, Jiakun</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Experimental thermal and fluid science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Kai</au><au>Xu, Zishun</au><au>Chen, Hong</au><au>Du, Jiakun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined effects of high energy ignition and tumble enhancement on performance of lean combustion for GDI engine</atitle><jtitle>Experimental thermal and fluid science</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>129</volume><spage>110464</spage><pages>110464-</pages><artnum>110464</artnum><issn>0894-1777</issn><eissn>1879-2286</eissn><abstract>•The influence of ignition energy and tumble level on lean combustion is studied.•Particle image velocimetry is used to evaluate intake port tumble modification.•The arc development images and the exact arc area are considered.•High energy ignition extends the lean-burn limit, high tumble improves the stability.•The advantages of high energy ignition is analyzed from the flame development images. Lean combustion can greatly improve the thermal efficiency of gasoline engine. Increasing ignition energy and tumble level can effectively expand its application range. Optical glass liner was used to clearly observe the in-cylinder state. Particle image velocimetry(PIV) was used for quantitative evaluation of tumble modification. The integral tumble ratio of the high tumble intake port is 1.67 times that of the basic intake port. Ignition energy was increased from 65 mJ to 300 mJ. Under the condition of no fuel injection, the duration of 300 mJ ignition arc is longer, and the peak arc area is about 4 times that of 65 mJ. The effects of ignition energy and tumble level on combustion stability, lean-burn limit, fuel economy and flame development were studied. The results show that high energy ignition can enlarge the lean-burn limit, but has no significant effect on combustion stability. High tumble has the opposite effect and can effectively improve fuel economy. The micro flame development images under the ultra-lean condition are different. The flame area of 300 mJ is larger and the combustion is more intense. High energy ignition contributes to the formation of initial flame kernel and flame propagation, so it can improve the lean-burn limit.</abstract><cop>Philadelphia</cop><pub>Elsevier Inc</pub><doi>10.1016/j.expthermflusci.2021.110464</doi></addata></record>
fulltext fulltext
identifier ISSN: 0894-1777
ispartof Experimental thermal and fluid science, 2021-11, Vol.129, p.110464, Article 110464
issn 0894-1777
1879-2286
language eng
recordid cdi_proquest_journals_2572611286
source Elsevier ScienceDirect Journals Complete
subjects Combustion
Combustion stability
Energy
Energy efficiency
Flame development
Flame propagation
Fuel consumption
Fuel economy
Fuel injection
Gasoline
Gasoline engines
Ignition
Ignition energy
Lean combustion
Optical glass
Particle image velocimetry
Thermodynamic efficiency
Tumble level
title Combined effects of high energy ignition and tumble enhancement on performance of lean combustion for GDI engine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A56%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20effects%20of%20high%20energy%20ignition%20and%20tumble%20enhancement%20on%20performance%20of%20lean%20combustion%20for%20GDI%20engine&rft.jtitle=Experimental%20thermal%20and%20fluid%20science&rft.au=Shen,%20Kai&rft.date=2021-11-01&rft.volume=129&rft.spage=110464&rft.pages=110464-&rft.artnum=110464&rft.issn=0894-1777&rft.eissn=1879-2286&rft_id=info:doi/10.1016/j.expthermflusci.2021.110464&rft_dat=%3Cproquest_cross%3E2572611286%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572611286&rft_id=info:pmid/&rft_els_id=S0894177721001126&rfr_iscdi=true