Sobolev Orthogonal Polynomials of Several Variables on Product Domains
Sobolev orthogonal polynomials of d variables on the product domain Ω : = [ a 1 , b 1 ] × ⋯ × [ a d , b d ] with respect to the inner product f , g S = c ∫ Ω ∇ κ f ( x ) · ∇ κ g ( x ) W ( x ) d x + ∑ i = 0 κ - 1 λ i ∇ i f ( p ) · ∇ i g ( p ) , κ ∈ N , are constructed, where ∇ i f , i = 0 , 1 , 2 , …...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2021-10, Vol.18 (5), Article 227 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sobolev orthogonal polynomials of
d
variables on the product domain
Ω
:
=
[
a
1
,
b
1
]
×
⋯
×
[
a
d
,
b
d
]
with respect to the inner product
f
,
g
S
=
c
∫
Ω
∇
κ
f
(
x
)
·
∇
κ
g
(
x
)
W
(
x
)
d
x
+
∑
i
=
0
κ
-
1
λ
i
∇
i
f
(
p
)
·
∇
i
g
(
p
)
,
κ
∈
N
,
are constructed, where
∇
i
f
,
i
=
0
,
1
,
2
,
…
,
κ
, is a column vector which contains all the partial derivatives of order
i
of
f
,
x
:
=
(
x
1
,
x
2
,
…
,
x
d
)
∈
R
d
,
d
x
:
=
d
x
1
d
x
2
⋯
d
x
d
,
W
(
x
)
:
=
w
1
(
x
1
)
w
2
(
x
2
)
⋯
w
d
(
x
d
)
is a product weight function on
Ω
,
w
i
is a weight function on
[
a
i
,
b
i
]
,
i
=
1
,
2
,
…
,
d
,
λ
i
>
0
for
i
=
0
,
1
,
…
,
κ
-
1
,
p
=
(
p
1
,
p
2
,
…
,
p
d
)
is a point in
R
d
, typically on the boundary of
Ω
, and
c
is the normalization constant of
W
. The main result consists of a generalization to several variables and higher order derivatives of some results which are presented in the literature of Sobolev orthogonal polynomials in two variables; namely, properties involving the integral part in
·
,
·
S
, a connection formula, and a recursive relation for constructing iteratively the polynomials. To illustrate the main ideas, we present a new example for the Hermite–Hermite–Laguerre product weight function. |
---|---|
ISSN: | 1660-5446 1660-5454 |
DOI: | 10.1007/s00009-021-01852-z |