Undular Hydraulic Jumps: Critical Analysis of 2D RANS-VOF Simulations
AbstractNumerical simulation of undular hydraulic jumps, which occur at an inflow Froude number slightly above unity, remain an important and enigmatic challenge in hydraulic engineering. In this study, a systematic assessment of the two-dimensional (2D) Reynolds averaged Navier Stokes–volume of flu...
Gespeichert in:
Veröffentlicht in: | Journal of hydraulic engineering (New York, N.Y.) N.Y.), 2021-11, Vol.147 (11) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Journal of hydraulic engineering (New York, N.Y.) |
container_volume | 147 |
creator | Roy Biswas, Tirtha Dey, Subhasish Sen, Dhrubajyoti |
description | AbstractNumerical simulation of undular hydraulic jumps, which occur at an inflow Froude number slightly above unity, remain an important and enigmatic challenge in hydraulic engineering. In this study, a systematic assessment of the two-dimensional (2D) Reynolds averaged Navier Stokes–volume of fluid (RANS-VOF) equations coupled with the k–ω shear stress transport (SST) turbulence model was carried out for the simulation of undular jumps. The modeling strategies adopted for obtaining a stable undular jump profile are highlighted in this paper. The correlation between turbulence intensity at the jump toe and jump characteristics is also demonstrated. Comparison of laboratory observations with results obtained from experiments conducted under different discharge, approach Froude number, and inflow conditions demonstrated that the proposed 2D RANS model can accurately reproduce the key free-surface characteristics corresponding to undular jumps. The model was capable of reproducing the velocity and pressure fields with greater accuracy than the depth-averaged model. The model was also successful in reproducing the bottom recirculation region below the first wave crest for undular jumps with partially developed boundary layer at the jump toe. The proposed 2D RANS-VOF computational fluid dynamics (CFD) model coupled with the k–ω SST turbulence closure equation is, therefore, recommended as an efficient tool for hydraulic computations, especially for the simulation of weak undular jumps. |
doi_str_mv | 10.1061/(ASCE)HY.1943-7900.0001939 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2572462113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572462113</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-2e2c0cda4f58fd3e008d2cb5067afa3daf10d9686253f138b8bff0e7be6588c73</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMoOKf_Q9CLHjrzo02T3UrtrDIcOCfsFNI0gY5unUl72H9vy6aePH3w8j4vHw8AtxhNMGL48T5ZptlDvp5gEdIgFghNEEJYUHEGRr_ZORihmNJAhERcgivvN30nZIKPQLbalV2tHMwPpVNdXWn42m33fgpTV7WVVjVMdqo--MrDxkLyBN-Tt2XwuZjBZbXtybZqdv4aXFhVe3NzumOwmmUfaR7MF88vaTIPFKVxGxBDNNKlCm3EbUkNQrwkuogQi5VVtFQWo1IwzkhELaa84IW1yMSFYRHnOqZjcHfc3bvmqzO-lZumc_1_XpIoJiEjGNO-NT22tGu8d8bKvau2yh0kRnLQJuWgTeZrOSiSgyJ50tbD7Agrr83f_A_5P_gN50FwUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572462113</pqid></control><display><type>article</type><title>Undular Hydraulic Jumps: Critical Analysis of 2D RANS-VOF Simulations</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Roy Biswas, Tirtha ; Dey, Subhasish ; Sen, Dhrubajyoti</creator><creatorcontrib>Roy Biswas, Tirtha ; Dey, Subhasish ; Sen, Dhrubajyoti</creatorcontrib><description>AbstractNumerical simulation of undular hydraulic jumps, which occur at an inflow Froude number slightly above unity, remain an important and enigmatic challenge in hydraulic engineering. In this study, a systematic assessment of the two-dimensional (2D) Reynolds averaged Navier Stokes–volume of fluid (RANS-VOF) equations coupled with the k–ω shear stress transport (SST) turbulence model was carried out for the simulation of undular jumps. The modeling strategies adopted for obtaining a stable undular jump profile are highlighted in this paper. The correlation between turbulence intensity at the jump toe and jump characteristics is also demonstrated. Comparison of laboratory observations with results obtained from experiments conducted under different discharge, approach Froude number, and inflow conditions demonstrated that the proposed 2D RANS model can accurately reproduce the key free-surface characteristics corresponding to undular jumps. The model was capable of reproducing the velocity and pressure fields with greater accuracy than the depth-averaged model. The model was also successful in reproducing the bottom recirculation region below the first wave crest for undular jumps with partially developed boundary layer at the jump toe. The proposed 2D RANS-VOF computational fluid dynamics (CFD) model coupled with the k–ω SST turbulence closure equation is, therefore, recommended as an efficient tool for hydraulic computations, especially for the simulation of weak undular jumps.</description><identifier>ISSN: 0733-9429</identifier><identifier>EISSN: 1943-7900</identifier><identifier>DOI: 10.1061/(ASCE)HY.1943-7900.0001939</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Boundary layers ; Computational fluid dynamics ; Computer applications ; Fluid dynamics ; Fluid flow ; Free surfaces ; Froude number ; Hydraulic engineering ; Hydraulics ; Hydrodynamics ; Inflow ; Mathematical models ; Reynolds averaged Navier-Stokes method ; Sea surface ; Shear stress ; Simulation ; Surface properties ; Surface temperature ; Technical Note ; Technical Notes ; Turbulence ; Turbulence intensity ; Turbulence models ; Two dimensional analysis ; Two dimensional models ; Wave crest ; Wave crests</subject><ispartof>Journal of hydraulic engineering (New York, N.Y.), 2021-11, Vol.147 (11)</ispartof><rights>2021 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a337t-2e2c0cda4f58fd3e008d2cb5067afa3daf10d9686253f138b8bff0e7be6588c73</citedby><cites>FETCH-LOGICAL-a337t-2e2c0cda4f58fd3e008d2cb5067afa3daf10d9686253f138b8bff0e7be6588c73</cites><orcidid>0000-0001-9764-1346 ; 0000-0002-4481-9865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)HY.1943-7900.0001939$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)HY.1943-7900.0001939$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,76162,76170</link.rule.ids></links><search><creatorcontrib>Roy Biswas, Tirtha</creatorcontrib><creatorcontrib>Dey, Subhasish</creatorcontrib><creatorcontrib>Sen, Dhrubajyoti</creatorcontrib><title>Undular Hydraulic Jumps: Critical Analysis of 2D RANS-VOF Simulations</title><title>Journal of hydraulic engineering (New York, N.Y.)</title><description>AbstractNumerical simulation of undular hydraulic jumps, which occur at an inflow Froude number slightly above unity, remain an important and enigmatic challenge in hydraulic engineering. In this study, a systematic assessment of the two-dimensional (2D) Reynolds averaged Navier Stokes–volume of fluid (RANS-VOF) equations coupled with the k–ω shear stress transport (SST) turbulence model was carried out for the simulation of undular jumps. The modeling strategies adopted for obtaining a stable undular jump profile are highlighted in this paper. The correlation between turbulence intensity at the jump toe and jump characteristics is also demonstrated. Comparison of laboratory observations with results obtained from experiments conducted under different discharge, approach Froude number, and inflow conditions demonstrated that the proposed 2D RANS model can accurately reproduce the key free-surface characteristics corresponding to undular jumps. The model was capable of reproducing the velocity and pressure fields with greater accuracy than the depth-averaged model. The model was also successful in reproducing the bottom recirculation region below the first wave crest for undular jumps with partially developed boundary layer at the jump toe. The proposed 2D RANS-VOF computational fluid dynamics (CFD) model coupled with the k–ω SST turbulence closure equation is, therefore, recommended as an efficient tool for hydraulic computations, especially for the simulation of weak undular jumps.</description><subject>Boundary layers</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Free surfaces</subject><subject>Froude number</subject><subject>Hydraulic engineering</subject><subject>Hydraulics</subject><subject>Hydrodynamics</subject><subject>Inflow</subject><subject>Mathematical models</subject><subject>Reynolds averaged Navier-Stokes method</subject><subject>Sea surface</subject><subject>Shear stress</subject><subject>Simulation</subject><subject>Surface properties</subject><subject>Surface temperature</subject><subject>Technical Note</subject><subject>Technical Notes</subject><subject>Turbulence</subject><subject>Turbulence intensity</subject><subject>Turbulence models</subject><subject>Two dimensional analysis</subject><subject>Two dimensional models</subject><subject>Wave crest</subject><subject>Wave crests</subject><issn>0733-9429</issn><issn>1943-7900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAYhoMoOKf_Q9CLHjrzo02T3UrtrDIcOCfsFNI0gY5unUl72H9vy6aePH3w8j4vHw8AtxhNMGL48T5ZptlDvp5gEdIgFghNEEJYUHEGRr_ZORihmNJAhERcgivvN30nZIKPQLbalV2tHMwPpVNdXWn42m33fgpTV7WVVjVMdqo--MrDxkLyBN-Tt2XwuZjBZbXtybZqdv4aXFhVe3NzumOwmmUfaR7MF88vaTIPFKVxGxBDNNKlCm3EbUkNQrwkuogQi5VVtFQWo1IwzkhELaa84IW1yMSFYRHnOqZjcHfc3bvmqzO-lZumc_1_XpIoJiEjGNO-NT22tGu8d8bKvau2yh0kRnLQJuWgTeZrOSiSgyJ50tbD7Agrr83f_A_5P_gN50FwUg</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Roy Biswas, Tirtha</creator><creator>Dey, Subhasish</creator><creator>Sen, Dhrubajyoti</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9764-1346</orcidid><orcidid>https://orcid.org/0000-0002-4481-9865</orcidid></search><sort><creationdate>20211101</creationdate><title>Undular Hydraulic Jumps: Critical Analysis of 2D RANS-VOF Simulations</title><author>Roy Biswas, Tirtha ; Dey, Subhasish ; Sen, Dhrubajyoti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-2e2c0cda4f58fd3e008d2cb5067afa3daf10d9686253f138b8bff0e7be6588c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary layers</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Free surfaces</topic><topic>Froude number</topic><topic>Hydraulic engineering</topic><topic>Hydraulics</topic><topic>Hydrodynamics</topic><topic>Inflow</topic><topic>Mathematical models</topic><topic>Reynolds averaged Navier-Stokes method</topic><topic>Sea surface</topic><topic>Shear stress</topic><topic>Simulation</topic><topic>Surface properties</topic><topic>Surface temperature</topic><topic>Technical Note</topic><topic>Technical Notes</topic><topic>Turbulence</topic><topic>Turbulence intensity</topic><topic>Turbulence models</topic><topic>Two dimensional analysis</topic><topic>Two dimensional models</topic><topic>Wave crest</topic><topic>Wave crests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy Biswas, Tirtha</creatorcontrib><creatorcontrib>Dey, Subhasish</creatorcontrib><creatorcontrib>Sen, Dhrubajyoti</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of hydraulic engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy Biswas, Tirtha</au><au>Dey, Subhasish</au><au>Sen, Dhrubajyoti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Undular Hydraulic Jumps: Critical Analysis of 2D RANS-VOF Simulations</atitle><jtitle>Journal of hydraulic engineering (New York, N.Y.)</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>147</volume><issue>11</issue><issn>0733-9429</issn><eissn>1943-7900</eissn><abstract>AbstractNumerical simulation of undular hydraulic jumps, which occur at an inflow Froude number slightly above unity, remain an important and enigmatic challenge in hydraulic engineering. In this study, a systematic assessment of the two-dimensional (2D) Reynolds averaged Navier Stokes–volume of fluid (RANS-VOF) equations coupled with the k–ω shear stress transport (SST) turbulence model was carried out for the simulation of undular jumps. The modeling strategies adopted for obtaining a stable undular jump profile are highlighted in this paper. The correlation between turbulence intensity at the jump toe and jump characteristics is also demonstrated. Comparison of laboratory observations with results obtained from experiments conducted under different discharge, approach Froude number, and inflow conditions demonstrated that the proposed 2D RANS model can accurately reproduce the key free-surface characteristics corresponding to undular jumps. The model was capable of reproducing the velocity and pressure fields with greater accuracy than the depth-averaged model. The model was also successful in reproducing the bottom recirculation region below the first wave crest for undular jumps with partially developed boundary layer at the jump toe. The proposed 2D RANS-VOF computational fluid dynamics (CFD) model coupled with the k–ω SST turbulence closure equation is, therefore, recommended as an efficient tool for hydraulic computations, especially for the simulation of weak undular jumps.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)HY.1943-7900.0001939</doi><orcidid>https://orcid.org/0000-0001-9764-1346</orcidid><orcidid>https://orcid.org/0000-0002-4481-9865</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-9429 |
ispartof | Journal of hydraulic engineering (New York, N.Y.), 2021-11, Vol.147 (11) |
issn | 0733-9429 1943-7900 |
language | eng |
recordid | cdi_proquest_journals_2572462113 |
source | American Society of Civil Engineers:NESLI2:Journals:2014 |
subjects | Boundary layers Computational fluid dynamics Computer applications Fluid dynamics Fluid flow Free surfaces Froude number Hydraulic engineering Hydraulics Hydrodynamics Inflow Mathematical models Reynolds averaged Navier-Stokes method Sea surface Shear stress Simulation Surface properties Surface temperature Technical Note Technical Notes Turbulence Turbulence intensity Turbulence models Two dimensional analysis Two dimensional models Wave crest Wave crests |
title | Undular Hydraulic Jumps: Critical Analysis of 2D RANS-VOF Simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T03%3A11%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Undular%20Hydraulic%20Jumps:%20Critical%20Analysis%20of%202D%20RANS-VOF%20Simulations&rft.jtitle=Journal%20of%20hydraulic%20engineering%20(New%20York,%20N.Y.)&rft.au=Roy%20Biswas,%20Tirtha&rft.date=2021-11-01&rft.volume=147&rft.issue=11&rft.issn=0733-9429&rft.eissn=1943-7900&rft_id=info:doi/10.1061/(ASCE)HY.1943-7900.0001939&rft_dat=%3Cproquest_cross%3E2572462113%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572462113&rft_id=info:pmid/&rfr_iscdi=true |