Multibeams energy harvester for rotational low-frequencies

The mechanical vibration induced by rotation speed is gaining interest in the last years. Comparing to other mechanical vibration sources, the excitation by rotational speed from low power wind turbines is really a challenge since the vibration frequency is lower than 10 Hz and it generates accelera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2018-07, Vol.1052 (1), p.12101
Hauptverfasser: Ramírez, J M, Gatti, C D, Machado, S P, Febbo, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12101
container_title Journal of physics. Conference series
container_volume 1052
creator Ramírez, J M
Gatti, C D
Machado, S P
Febbo, M
description The mechanical vibration induced by rotation speed is gaining interest in the last years. Comparing to other mechanical vibration sources, the excitation by rotational speed from low power wind turbines is really a challenge since the vibration frequency is lower than 10 Hz and it generates accelerations higher than 1 g. In this paper, a rotating piezoelectric energy harvester is designed and analysed. In order to achieve the best electrical power performance, the prototype is designed to have low natural frequencies varying the hub positions and dimensions of the multi-beams, decreasing the crossing-frequency (natural frequency/rotation speed) and finding the optimal electrical load resistance. The dynamic behaviour of the harvester is simulated using a nonlinear one-dimensional finite element formulation. The rotating piezoelectric beam is formulated by means of a geometrically nonlinear finite element with six mechanical degrees of freedom and one electrical degree of freedom per node. The simulations are performed from 1 to 4.5 Hz (60 - 270 rpm) rotation speeds. A performance assessment is done investigating the influence of the hub positions, crossing-frequencies, electrical resistance and rotation speeds over the voltage and power generation. Regarding harvester's performance, promising results are obtained since the output power 3.72 mW @ 3.61 Hz. In this sense, this article provides a prototype at low rotational frequency capable to scavenge energy from low power wind turbines.
doi_str_mv 10.1088/1742-6596/1052/1/012101
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2572366842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572366842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-895162819de604bc602e35cef97f03a6fa210e6a2c8f7e206682fe18f6d452fa3</originalsourceid><addsrcrecordid>eNqFkN1KxDAQRoMouK4-gwXvhNpM0qapd1L8ZUVBvQ7ZdqJdupuadJV9e1MqK4JgbiYw35kZDiHHQM-ASplAnrJYZIVIgGYsgYQCAwo7ZLLt7G7_Uu6TA-8XlPLw8gk5v1-3fTNHvfQRrtC9bqI37T7Q9-giY13kbK_7xq50G7X2MzYO39e4qhr0h2TP6Nbj0Xedkpery-fyJp49XN-WF7O44oXsY1lkIJiEokZB03klKEOeVWiK3FCuhdHhXBSaVdLkyKgQkhkEaUSdZsxoPiUn49zO2bDb92ph1y4c5BXLcsYDkLKQysdU5az3Do3qXLPUbqOAqkGUGhSoQYcaRClQo6hA8pFsbPcz-n_q9A_q7rF8-h1UXW34F3gAd3o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572366842</pqid></control><display><type>article</type><title>Multibeams energy harvester for rotational low-frequencies</title><source>Institute of Physics IOPscience extra</source><source>IOP Publishing</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Ramírez, J M ; Gatti, C D ; Machado, S P ; Febbo, M</creator><creatorcontrib>Ramírez, J M ; Gatti, C D ; Machado, S P ; Febbo, M</creatorcontrib><description>The mechanical vibration induced by rotation speed is gaining interest in the last years. Comparing to other mechanical vibration sources, the excitation by rotational speed from low power wind turbines is really a challenge since the vibration frequency is lower than 10 Hz and it generates accelerations higher than 1 g. In this paper, a rotating piezoelectric energy harvester is designed and analysed. In order to achieve the best electrical power performance, the prototype is designed to have low natural frequencies varying the hub positions and dimensions of the multi-beams, decreasing the crossing-frequency (natural frequency/rotation speed) and finding the optimal electrical load resistance. The dynamic behaviour of the harvester is simulated using a nonlinear one-dimensional finite element formulation. The rotating piezoelectric beam is formulated by means of a geometrically nonlinear finite element with six mechanical degrees of freedom and one electrical degree of freedom per node. The simulations are performed from 1 to 4.5 Hz (60 - 270 rpm) rotation speeds. A performance assessment is done investigating the influence of the hub positions, crossing-frequencies, electrical resistance and rotation speeds over the voltage and power generation. Regarding harvester's performance, promising results are obtained since the output power 3.72 mW @ 3.61 Hz. In this sense, this article provides a prototype at low rotational frequency capable to scavenge energy from low power wind turbines.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1052/1/012101</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Cantilever beams ; Degrees of freedom ; Electrical loads ; Electrical resistance ; Energy harvesting ; Load resistance ; Performance assessment ; Physics ; Prototypes ; Resonant frequencies ; Rotation ; Vibration ; Wind turbines</subject><ispartof>Journal of physics. Conference series, 2018-07, Vol.1052 (1), p.12101</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c398t-895162819de604bc602e35cef97f03a6fa210e6a2c8f7e206682fe18f6d452fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1052/1/012101/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Ramírez, J M</creatorcontrib><creatorcontrib>Gatti, C D</creatorcontrib><creatorcontrib>Machado, S P</creatorcontrib><creatorcontrib>Febbo, M</creatorcontrib><title>Multibeams energy harvester for rotational low-frequencies</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The mechanical vibration induced by rotation speed is gaining interest in the last years. Comparing to other mechanical vibration sources, the excitation by rotational speed from low power wind turbines is really a challenge since the vibration frequency is lower than 10 Hz and it generates accelerations higher than 1 g. In this paper, a rotating piezoelectric energy harvester is designed and analysed. In order to achieve the best electrical power performance, the prototype is designed to have low natural frequencies varying the hub positions and dimensions of the multi-beams, decreasing the crossing-frequency (natural frequency/rotation speed) and finding the optimal electrical load resistance. The dynamic behaviour of the harvester is simulated using a nonlinear one-dimensional finite element formulation. The rotating piezoelectric beam is formulated by means of a geometrically nonlinear finite element with six mechanical degrees of freedom and one electrical degree of freedom per node. The simulations are performed from 1 to 4.5 Hz (60 - 270 rpm) rotation speeds. A performance assessment is done investigating the influence of the hub positions, crossing-frequencies, electrical resistance and rotation speeds over the voltage and power generation. Regarding harvester's performance, promising results are obtained since the output power 3.72 mW @ 3.61 Hz. In this sense, this article provides a prototype at low rotational frequency capable to scavenge energy from low power wind turbines.</description><subject>Cantilever beams</subject><subject>Degrees of freedom</subject><subject>Electrical loads</subject><subject>Electrical resistance</subject><subject>Energy harvesting</subject><subject>Load resistance</subject><subject>Performance assessment</subject><subject>Physics</subject><subject>Prototypes</subject><subject>Resonant frequencies</subject><subject>Rotation</subject><subject>Vibration</subject><subject>Wind turbines</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkN1KxDAQRoMouK4-gwXvhNpM0qapd1L8ZUVBvQ7ZdqJdupuadJV9e1MqK4JgbiYw35kZDiHHQM-ASplAnrJYZIVIgGYsgYQCAwo7ZLLt7G7_Uu6TA-8XlPLw8gk5v1-3fTNHvfQRrtC9bqI37T7Q9-giY13kbK_7xq50G7X2MzYO39e4qhr0h2TP6Nbj0Xedkpery-fyJp49XN-WF7O44oXsY1lkIJiEokZB03klKEOeVWiK3FCuhdHhXBSaVdLkyKgQkhkEaUSdZsxoPiUn49zO2bDb92ph1y4c5BXLcsYDkLKQysdU5az3Do3qXLPUbqOAqkGUGhSoQYcaRClQo6hA8pFsbPcz-n_q9A_q7rF8-h1UXW34F3gAd3o</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Ramírez, J M</creator><creator>Gatti, C D</creator><creator>Machado, S P</creator><creator>Febbo, M</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20180701</creationdate><title>Multibeams energy harvester for rotational low-frequencies</title><author>Ramírez, J M ; Gatti, C D ; Machado, S P ; Febbo, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-895162819de604bc602e35cef97f03a6fa210e6a2c8f7e206682fe18f6d452fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cantilever beams</topic><topic>Degrees of freedom</topic><topic>Electrical loads</topic><topic>Electrical resistance</topic><topic>Energy harvesting</topic><topic>Load resistance</topic><topic>Performance assessment</topic><topic>Physics</topic><topic>Prototypes</topic><topic>Resonant frequencies</topic><topic>Rotation</topic><topic>Vibration</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramírez, J M</creatorcontrib><creatorcontrib>Gatti, C D</creatorcontrib><creatorcontrib>Machado, S P</creatorcontrib><creatorcontrib>Febbo, M</creatorcontrib><collection>IOP Publishing</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramírez, J M</au><au>Gatti, C D</au><au>Machado, S P</au><au>Febbo, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multibeams energy harvester for rotational low-frequencies</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2018-07-01</date><risdate>2018</risdate><volume>1052</volume><issue>1</issue><spage>12101</spage><pages>12101-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The mechanical vibration induced by rotation speed is gaining interest in the last years. Comparing to other mechanical vibration sources, the excitation by rotational speed from low power wind turbines is really a challenge since the vibration frequency is lower than 10 Hz and it generates accelerations higher than 1 g. In this paper, a rotating piezoelectric energy harvester is designed and analysed. In order to achieve the best electrical power performance, the prototype is designed to have low natural frequencies varying the hub positions and dimensions of the multi-beams, decreasing the crossing-frequency (natural frequency/rotation speed) and finding the optimal electrical load resistance. The dynamic behaviour of the harvester is simulated using a nonlinear one-dimensional finite element formulation. The rotating piezoelectric beam is formulated by means of a geometrically nonlinear finite element with six mechanical degrees of freedom and one electrical degree of freedom per node. The simulations are performed from 1 to 4.5 Hz (60 - 270 rpm) rotation speeds. A performance assessment is done investigating the influence of the hub positions, crossing-frequencies, electrical resistance and rotation speeds over the voltage and power generation. Regarding harvester's performance, promising results are obtained since the output power 3.72 mW @ 3.61 Hz. In this sense, this article provides a prototype at low rotational frequency capable to scavenge energy from low power wind turbines.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1052/1/012101</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2018-07, Vol.1052 (1), p.12101
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2572366842
source Institute of Physics IOPscience extra; IOP Publishing; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects Cantilever beams
Degrees of freedom
Electrical loads
Electrical resistance
Energy harvesting
Load resistance
Performance assessment
Physics
Prototypes
Resonant frequencies
Rotation
Vibration
Wind turbines
title Multibeams energy harvester for rotational low-frequencies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A27%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multibeams%20energy%20harvester%20for%20rotational%20low-frequencies&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Ram%C3%ADrez,%20J%20M&rft.date=2018-07-01&rft.volume=1052&rft.issue=1&rft.spage=12101&rft.pages=12101-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1052/1/012101&rft_dat=%3Cproquest_iop_j%3E2572366842%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572366842&rft_id=info:pmid/&rfr_iscdi=true