Global Strong Solutions to Cauchy Problem of 1D Non-resistive MHD Equations with No Vacuum at Infinity
In this paper, we study the Cauchy problem of 1D non-resistive compressible magnetohydrodynamics (MHD) equations. We established the global existence and uniqueness of strong solutions for large initial data, where the initial density and initial magnetic field approach non-zero constants at infinit...
Gespeichert in:
Veröffentlicht in: | Acta applicandae mathematicae 2021-10, Vol.175 (1), Article 7 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Acta applicandae mathematicae |
container_volume | 175 |
creator | Ai, Xiaolian Li, Zilai Ye, Yulin |
description | In this paper, we study the Cauchy problem of 1D non-resistive compressible magnetohydrodynamics (MHD) equations. We established the global existence and uniqueness of strong solutions for large initial data, where the initial density and initial magnetic field approach non-zero constants at infinity, but the initial vacuum of the density inside the region can be permitted. The analysis is based on the Caffarelli-Kohn-Nirenberg weighted inequality and the technique of mathematical frequency decomposition to get the upper bound of the density, and no more artificial conditions are needed to obtain the upper bound estimate of magnetic field
b
. |
doi_str_mv | 10.1007/s10440-021-00434-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2572354745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572354745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-2b9a8d640e50a28bb9f26592b72365dc41767499736e8b428eda87964b6238da3</originalsourceid><addsrcrecordid>eNp9kEtLxDAURoMoOI7-AVcB19GbR5NmKeNjhPEBo25D0knHSqfRJFXm31ut4M7V3ZzzXTgIHVM4pQDqLFEQAggwSgAEF4TuoAktFCMauNxFE6BSkRKo3kcHKb0CANdSTlB93QZnW7zMMXRrvAxtn5vQJZwDntm-etnihxhc6zc41Jhe4LvQkehTk3Lz4fHt_AJfvvd2dD6b_DIA-NlWfb_BNuObrm66Jm8P0V5t2-SPfu8UPV1dPs7mZHF_fTM7X5CKCZ0Jc9qWKynAF2BZ6ZyumSw0c4pxWawqQZVUQmvFpS-dYKVf2VJpKZxkvFxZPkUn4-5bDO-9T9m8hj52w0vDhhq8EEoUA8VGqoohpehr8xabjY1bQ8F89zRjTzP0ND89DR0kPkppgLu1j3_T_1hftTR2rA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572354745</pqid></control><display><type>article</type><title>Global Strong Solutions to Cauchy Problem of 1D Non-resistive MHD Equations with No Vacuum at Infinity</title><source>SpringerLink Journals</source><creator>Ai, Xiaolian ; Li, Zilai ; Ye, Yulin</creator><creatorcontrib>Ai, Xiaolian ; Li, Zilai ; Ye, Yulin</creatorcontrib><description>In this paper, we study the Cauchy problem of 1D non-resistive compressible magnetohydrodynamics (MHD) equations. We established the global existence and uniqueness of strong solutions for large initial data, where the initial density and initial magnetic field approach non-zero constants at infinity, but the initial vacuum of the density inside the region can be permitted. The analysis is based on the Caffarelli-Kohn-Nirenberg weighted inequality and the technique of mathematical frequency decomposition to get the upper bound of the density, and no more artificial conditions are needed to obtain the upper bound estimate of magnetic field
b
.</description><identifier>ISSN: 0167-8019</identifier><identifier>EISSN: 1572-9036</identifier><identifier>DOI: 10.1007/s10440-021-00434-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Cauchy problems ; Compressibility ; Computational Mathematics and Numerical Analysis ; Density ; Infinity ; Magnetic fields ; Magnetohydrodynamics ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Probability Theory and Stochastic Processes ; Upper bounds</subject><ispartof>Acta applicandae mathematicae, 2021-10, Vol.175 (1), Article 7</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-2b9a8d640e50a28bb9f26592b72365dc41767499736e8b428eda87964b6238da3</citedby><cites>FETCH-LOGICAL-c249t-2b9a8d640e50a28bb9f26592b72365dc41767499736e8b428eda87964b6238da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10440-021-00434-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10440-021-00434-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ai, Xiaolian</creatorcontrib><creatorcontrib>Li, Zilai</creatorcontrib><creatorcontrib>Ye, Yulin</creatorcontrib><title>Global Strong Solutions to Cauchy Problem of 1D Non-resistive MHD Equations with No Vacuum at Infinity</title><title>Acta applicandae mathematicae</title><addtitle>Acta Appl Math</addtitle><description>In this paper, we study the Cauchy problem of 1D non-resistive compressible magnetohydrodynamics (MHD) equations. We established the global existence and uniqueness of strong solutions for large initial data, where the initial density and initial magnetic field approach non-zero constants at infinity, but the initial vacuum of the density inside the region can be permitted. The analysis is based on the Caffarelli-Kohn-Nirenberg weighted inequality and the technique of mathematical frequency decomposition to get the upper bound of the density, and no more artificial conditions are needed to obtain the upper bound estimate of magnetic field
b
.</description><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Cauchy problems</subject><subject>Compressibility</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Density</subject><subject>Infinity</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Upper bounds</subject><issn>0167-8019</issn><issn>1572-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLxDAURoMoOI7-AVcB19GbR5NmKeNjhPEBo25D0knHSqfRJFXm31ut4M7V3ZzzXTgIHVM4pQDqLFEQAggwSgAEF4TuoAktFCMauNxFE6BSkRKo3kcHKb0CANdSTlB93QZnW7zMMXRrvAxtn5vQJZwDntm-etnihxhc6zc41Jhe4LvQkehTk3Lz4fHt_AJfvvd2dD6b_DIA-NlWfb_BNuObrm66Jm8P0V5t2-SPfu8UPV1dPs7mZHF_fTM7X5CKCZ0Jc9qWKynAF2BZ6ZyumSw0c4pxWawqQZVUQmvFpS-dYKVf2VJpKZxkvFxZPkUn4-5bDO-9T9m8hj52w0vDhhq8EEoUA8VGqoohpehr8xabjY1bQ8F89zRjTzP0ND89DR0kPkppgLu1j3_T_1hftTR2rA</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Ai, Xiaolian</creator><creator>Li, Zilai</creator><creator>Ye, Yulin</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20211001</creationdate><title>Global Strong Solutions to Cauchy Problem of 1D Non-resistive MHD Equations with No Vacuum at Infinity</title><author>Ai, Xiaolian ; Li, Zilai ; Ye, Yulin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-2b9a8d640e50a28bb9f26592b72365dc41767499736e8b428eda87964b6238da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Cauchy problems</topic><topic>Compressibility</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Density</topic><topic>Infinity</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ai, Xiaolian</creatorcontrib><creatorcontrib>Li, Zilai</creatorcontrib><creatorcontrib>Ye, Yulin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta applicandae mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ai, Xiaolian</au><au>Li, Zilai</au><au>Ye, Yulin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Strong Solutions to Cauchy Problem of 1D Non-resistive MHD Equations with No Vacuum at Infinity</atitle><jtitle>Acta applicandae mathematicae</jtitle><stitle>Acta Appl Math</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>175</volume><issue>1</issue><artnum>7</artnum><issn>0167-8019</issn><eissn>1572-9036</eissn><abstract>In this paper, we study the Cauchy problem of 1D non-resistive compressible magnetohydrodynamics (MHD) equations. We established the global existence and uniqueness of strong solutions for large initial data, where the initial density and initial magnetic field approach non-zero constants at infinity, but the initial vacuum of the density inside the region can be permitted. The analysis is based on the Caffarelli-Kohn-Nirenberg weighted inequality and the technique of mathematical frequency decomposition to get the upper bound of the density, and no more artificial conditions are needed to obtain the upper bound estimate of magnetic field
b
.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10440-021-00434-1</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8019 |
ispartof | Acta applicandae mathematicae, 2021-10, Vol.175 (1), Article 7 |
issn | 0167-8019 1572-9036 |
language | eng |
recordid | cdi_proquest_journals_2572354745 |
source | SpringerLink Journals |
subjects | Applications of Mathematics Calculus of Variations and Optimal Control Optimization Cauchy problems Compressibility Computational Mathematics and Numerical Analysis Density Infinity Magnetic fields Magnetohydrodynamics Mathematical analysis Mathematics Mathematics and Statistics Partial Differential Equations Probability Theory and Stochastic Processes Upper bounds |
title | Global Strong Solutions to Cauchy Problem of 1D Non-resistive MHD Equations with No Vacuum at Infinity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A30%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Strong%20Solutions%20to%20Cauchy%20Problem%20of%201D%20Non-resistive%20MHD%20Equations%20with%20No%20Vacuum%20at%20Infinity&rft.jtitle=Acta%20applicandae%20mathematicae&rft.au=Ai,%20Xiaolian&rft.date=2021-10-01&rft.volume=175&rft.issue=1&rft.artnum=7&rft.issn=0167-8019&rft.eissn=1572-9036&rft_id=info:doi/10.1007/s10440-021-00434-1&rft_dat=%3Cproquest_cross%3E2572354745%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572354745&rft_id=info:pmid/&rfr_iscdi=true |