Global Strong Solutions to Cauchy Problem of 1D Non-resistive MHD Equations with No Vacuum at Infinity

In this paper, we study the Cauchy problem of 1D non-resistive compressible magnetohydrodynamics (MHD) equations. We established the global existence and uniqueness of strong solutions for large initial data, where the initial density and initial magnetic field approach non-zero constants at infinit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta applicandae mathematicae 2021-10, Vol.175 (1), Article 7
Hauptverfasser: Ai, Xiaolian, Li, Zilai, Ye, Yulin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Acta applicandae mathematicae
container_volume 175
creator Ai, Xiaolian
Li, Zilai
Ye, Yulin
description In this paper, we study the Cauchy problem of 1D non-resistive compressible magnetohydrodynamics (MHD) equations. We established the global existence and uniqueness of strong solutions for large initial data, where the initial density and initial magnetic field approach non-zero constants at infinity, but the initial vacuum of the density inside the region can be permitted. The analysis is based on the Caffarelli-Kohn-Nirenberg weighted inequality and the technique of mathematical frequency decomposition to get the upper bound of the density, and no more artificial conditions are needed to obtain the upper bound estimate of magnetic field b .
doi_str_mv 10.1007/s10440-021-00434-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2572354745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572354745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-2b9a8d640e50a28bb9f26592b72365dc41767499736e8b428eda87964b6238da3</originalsourceid><addsrcrecordid>eNp9kEtLxDAURoMoOI7-AVcB19GbR5NmKeNjhPEBo25D0knHSqfRJFXm31ut4M7V3ZzzXTgIHVM4pQDqLFEQAggwSgAEF4TuoAktFCMauNxFE6BSkRKo3kcHKb0CANdSTlB93QZnW7zMMXRrvAxtn5vQJZwDntm-etnihxhc6zc41Jhe4LvQkehTk3Lz4fHt_AJfvvd2dD6b_DIA-NlWfb_BNuObrm66Jm8P0V5t2-SPfu8UPV1dPs7mZHF_fTM7X5CKCZ0Jc9qWKynAF2BZ6ZyumSw0c4pxWawqQZVUQmvFpS-dYKVf2VJpKZxkvFxZPkUn4-5bDO-9T9m8hj52w0vDhhq8EEoUA8VGqoohpehr8xabjY1bQ8F89zRjTzP0ND89DR0kPkppgLu1j3_T_1hftTR2rA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572354745</pqid></control><display><type>article</type><title>Global Strong Solutions to Cauchy Problem of 1D Non-resistive MHD Equations with No Vacuum at Infinity</title><source>SpringerLink Journals</source><creator>Ai, Xiaolian ; Li, Zilai ; Ye, Yulin</creator><creatorcontrib>Ai, Xiaolian ; Li, Zilai ; Ye, Yulin</creatorcontrib><description>In this paper, we study the Cauchy problem of 1D non-resistive compressible magnetohydrodynamics (MHD) equations. We established the global existence and uniqueness of strong solutions for large initial data, where the initial density and initial magnetic field approach non-zero constants at infinity, but the initial vacuum of the density inside the region can be permitted. The analysis is based on the Caffarelli-Kohn-Nirenberg weighted inequality and the technique of mathematical frequency decomposition to get the upper bound of the density, and no more artificial conditions are needed to obtain the upper bound estimate of magnetic field b .</description><identifier>ISSN: 0167-8019</identifier><identifier>EISSN: 1572-9036</identifier><identifier>DOI: 10.1007/s10440-021-00434-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Cauchy problems ; Compressibility ; Computational Mathematics and Numerical Analysis ; Density ; Infinity ; Magnetic fields ; Magnetohydrodynamics ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Probability Theory and Stochastic Processes ; Upper bounds</subject><ispartof>Acta applicandae mathematicae, 2021-10, Vol.175 (1), Article 7</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-2b9a8d640e50a28bb9f26592b72365dc41767499736e8b428eda87964b6238da3</citedby><cites>FETCH-LOGICAL-c249t-2b9a8d640e50a28bb9f26592b72365dc41767499736e8b428eda87964b6238da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10440-021-00434-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10440-021-00434-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ai, Xiaolian</creatorcontrib><creatorcontrib>Li, Zilai</creatorcontrib><creatorcontrib>Ye, Yulin</creatorcontrib><title>Global Strong Solutions to Cauchy Problem of 1D Non-resistive MHD Equations with No Vacuum at Infinity</title><title>Acta applicandae mathematicae</title><addtitle>Acta Appl Math</addtitle><description>In this paper, we study the Cauchy problem of 1D non-resistive compressible magnetohydrodynamics (MHD) equations. We established the global existence and uniqueness of strong solutions for large initial data, where the initial density and initial magnetic field approach non-zero constants at infinity, but the initial vacuum of the density inside the region can be permitted. The analysis is based on the Caffarelli-Kohn-Nirenberg weighted inequality and the technique of mathematical frequency decomposition to get the upper bound of the density, and no more artificial conditions are needed to obtain the upper bound estimate of magnetic field b .</description><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Cauchy problems</subject><subject>Compressibility</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Density</subject><subject>Infinity</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Upper bounds</subject><issn>0167-8019</issn><issn>1572-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLxDAURoMoOI7-AVcB19GbR5NmKeNjhPEBo25D0knHSqfRJFXm31ut4M7V3ZzzXTgIHVM4pQDqLFEQAggwSgAEF4TuoAktFCMauNxFE6BSkRKo3kcHKb0CANdSTlB93QZnW7zMMXRrvAxtn5vQJZwDntm-etnihxhc6zc41Jhe4LvQkehTk3Lz4fHt_AJfvvd2dD6b_DIA-NlWfb_BNuObrm66Jm8P0V5t2-SPfu8UPV1dPs7mZHF_fTM7X5CKCZ0Jc9qWKynAF2BZ6ZyumSw0c4pxWawqQZVUQmvFpS-dYKVf2VJpKZxkvFxZPkUn4-5bDO-9T9m8hj52w0vDhhq8EEoUA8VGqoohpehr8xabjY1bQ8F89zRjTzP0ND89DR0kPkppgLu1j3_T_1hftTR2rA</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Ai, Xiaolian</creator><creator>Li, Zilai</creator><creator>Ye, Yulin</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20211001</creationdate><title>Global Strong Solutions to Cauchy Problem of 1D Non-resistive MHD Equations with No Vacuum at Infinity</title><author>Ai, Xiaolian ; Li, Zilai ; Ye, Yulin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-2b9a8d640e50a28bb9f26592b72365dc41767499736e8b428eda87964b6238da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Cauchy problems</topic><topic>Compressibility</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Density</topic><topic>Infinity</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ai, Xiaolian</creatorcontrib><creatorcontrib>Li, Zilai</creatorcontrib><creatorcontrib>Ye, Yulin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta applicandae mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ai, Xiaolian</au><au>Li, Zilai</au><au>Ye, Yulin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Strong Solutions to Cauchy Problem of 1D Non-resistive MHD Equations with No Vacuum at Infinity</atitle><jtitle>Acta applicandae mathematicae</jtitle><stitle>Acta Appl Math</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>175</volume><issue>1</issue><artnum>7</artnum><issn>0167-8019</issn><eissn>1572-9036</eissn><abstract>In this paper, we study the Cauchy problem of 1D non-resistive compressible magnetohydrodynamics (MHD) equations. We established the global existence and uniqueness of strong solutions for large initial data, where the initial density and initial magnetic field approach non-zero constants at infinity, but the initial vacuum of the density inside the region can be permitted. The analysis is based on the Caffarelli-Kohn-Nirenberg weighted inequality and the technique of mathematical frequency decomposition to get the upper bound of the density, and no more artificial conditions are needed to obtain the upper bound estimate of magnetic field b .</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10440-021-00434-1</doi></addata></record>
fulltext fulltext
identifier ISSN: 0167-8019
ispartof Acta applicandae mathematicae, 2021-10, Vol.175 (1), Article 7
issn 0167-8019
1572-9036
language eng
recordid cdi_proquest_journals_2572354745
source SpringerLink Journals
subjects Applications of Mathematics
Calculus of Variations and Optimal Control
Optimization
Cauchy problems
Compressibility
Computational Mathematics and Numerical Analysis
Density
Infinity
Magnetic fields
Magnetohydrodynamics
Mathematical analysis
Mathematics
Mathematics and Statistics
Partial Differential Equations
Probability Theory and Stochastic Processes
Upper bounds
title Global Strong Solutions to Cauchy Problem of 1D Non-resistive MHD Equations with No Vacuum at Infinity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A30%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Strong%20Solutions%20to%20Cauchy%20Problem%20of%201D%20Non-resistive%20MHD%20Equations%20with%20No%20Vacuum%20at%20Infinity&rft.jtitle=Acta%20applicandae%20mathematicae&rft.au=Ai,%20Xiaolian&rft.date=2021-10-01&rft.volume=175&rft.issue=1&rft.artnum=7&rft.issn=0167-8019&rft.eissn=1572-9036&rft_id=info:doi/10.1007/s10440-021-00434-1&rft_dat=%3Cproquest_cross%3E2572354745%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572354745&rft_id=info:pmid/&rfr_iscdi=true