Insight into the stress corrosion cracking of HP-13Cr stainless steel in the aggressive geothermal environment

•The effect of temperature and CO2 pressure on the stress corrosion cracking of HP-13Cr stainless steel was proposed.•The stress and strain concentration in pitting area was studied by finite element analysis.•A pitting-to-cracking model has been built to elucidating the initiation of stress corrosi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Corrosion science 2021-09, Vol.190, p.109699, Article 109699
Hauptverfasser: Qi, Wenlong, Gao, Qiuying, Zhao, Yang, Zhang, Tao, Wang, Fuhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 109699
container_title Corrosion science
container_volume 190
creator Qi, Wenlong
Gao, Qiuying
Zhao, Yang
Zhang, Tao
Wang, Fuhui
description •The effect of temperature and CO2 pressure on the stress corrosion cracking of HP-13Cr stainless steel was proposed.•The stress and strain concentration in pitting area was studied by finite element analysis.•A pitting-to-cracking model has been built to elucidating the initiation of stress corrosion cracking.•A “HTHP-SCC electrochemical system” was developed to conduct the electrochemistry measurement under applied stress. The stress corrosion cracking of HP-13Cr stainless steel in the geothermal environment was studied by experimental measurements and modeling calculations. The stress corrosion cracking susceptibility of HP-13Cr stainless steel increases with both temperature and CO2 pressure, and shows a synergistic effect greater than the temperature or CO2 pressure does singly. The fracture morphologies presented quasi-cleavage fracture characteristic in the geothermal environment. The stress corrosion cracking mechanism is dominated by the anodic process. The critical stress intensity factor for stress corrosion cracking was measured and the pitting-to-cracking process was clarified by a mechanism model.
doi_str_mv 10.1016/j.corsci.2021.109699
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2572274868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X21004650</els_id><sourcerecordid>2572274868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-3b4f9bdc9de92d75321f27145da3453b3bc2c09d1586289ab935d5e57c72ca983</originalsourceid><addsrcrecordid>eNp9kM1KAzEYRYMoWKtv4CLgemp-5i8bQYragqALBXchk_lmmrFNapIWfHszjmtXgcs5N3wXoWtKFpTQ8nZYaOeDNgtGGE2RKIU4QTNaVyIjuShP0YwQSjLB649zdBHCQAhhKZkhu7bB9JuIjY0Oxw3gED2EgFOjd8E4i7VX-tPYHrsOr14zypc-QcrY7ciFCLBN9q-r-n6UzRFwDy4lfqe2GOzReGd3YOMlOuvUNsDV3ztH748Pb8tV9vzytF7eP2ea8zxmvMk70bRatCBYWxWc0Y5VNC9axfOCN7zRTBPR0qIuWS1UI3jRFlBUumJaiZrP0c3Uu_fu6wAhysEdvE1fSlZUjFV5XY5UPlE6nRo8dHLvzU75b0mJHJeVg5yWleOyclo2aXeTBumCowEvEwFWQ2s86ChbZ_4v-AGXVoTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572274868</pqid></control><display><type>article</type><title>Insight into the stress corrosion cracking of HP-13Cr stainless steel in the aggressive geothermal environment</title><source>Elsevier ScienceDirect Journals</source><creator>Qi, Wenlong ; Gao, Qiuying ; Zhao, Yang ; Zhang, Tao ; Wang, Fuhui</creator><creatorcontrib>Qi, Wenlong ; Gao, Qiuying ; Zhao, Yang ; Zhang, Tao ; Wang, Fuhui</creatorcontrib><description>•The effect of temperature and CO2 pressure on the stress corrosion cracking of HP-13Cr stainless steel was proposed.•The stress and strain concentration in pitting area was studied by finite element analysis.•A pitting-to-cracking model has been built to elucidating the initiation of stress corrosion cracking.•A “HTHP-SCC electrochemical system” was developed to conduct the electrochemistry measurement under applied stress. The stress corrosion cracking of HP-13Cr stainless steel in the geothermal environment was studied by experimental measurements and modeling calculations. The stress corrosion cracking susceptibility of HP-13Cr stainless steel increases with both temperature and CO2 pressure, and shows a synergistic effect greater than the temperature or CO2 pressure does singly. The fracture morphologies presented quasi-cleavage fracture characteristic in the geothermal environment. The stress corrosion cracking mechanism is dominated by the anodic process. The critical stress intensity factor for stress corrosion cracking was measured and the pitting-to-cracking process was clarified by a mechanism model.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/j.corsci.2021.109699</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Carbon dioxide ; Corrosion ; Corrosion environments ; Corrosion mechanisms ; Geothermal environment ; HP-13Cr stainless steel ; Morphology ; Pitting (corrosion) ; Pitting-to-cracking model ; Stainless steel ; Stainless steels ; Stress corrosion cracking ; Stress intensity factors ; Synergistic effect</subject><ispartof>Corrosion science, 2021-09, Vol.190, p.109699, Article 109699</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Sep 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-3b4f9bdc9de92d75321f27145da3453b3bc2c09d1586289ab935d5e57c72ca983</citedby><cites>FETCH-LOGICAL-c334t-3b4f9bdc9de92d75321f27145da3453b3bc2c09d1586289ab935d5e57c72ca983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010938X21004650$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Qi, Wenlong</creatorcontrib><creatorcontrib>Gao, Qiuying</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Wang, Fuhui</creatorcontrib><title>Insight into the stress corrosion cracking of HP-13Cr stainless steel in the aggressive geothermal environment</title><title>Corrosion science</title><description>•The effect of temperature and CO2 pressure on the stress corrosion cracking of HP-13Cr stainless steel was proposed.•The stress and strain concentration in pitting area was studied by finite element analysis.•A pitting-to-cracking model has been built to elucidating the initiation of stress corrosion cracking.•A “HTHP-SCC electrochemical system” was developed to conduct the electrochemistry measurement under applied stress. The stress corrosion cracking of HP-13Cr stainless steel in the geothermal environment was studied by experimental measurements and modeling calculations. The stress corrosion cracking susceptibility of HP-13Cr stainless steel increases with both temperature and CO2 pressure, and shows a synergistic effect greater than the temperature or CO2 pressure does singly. The fracture morphologies presented quasi-cleavage fracture characteristic in the geothermal environment. The stress corrosion cracking mechanism is dominated by the anodic process. The critical stress intensity factor for stress corrosion cracking was measured and the pitting-to-cracking process was clarified by a mechanism model.</description><subject>Carbon dioxide</subject><subject>Corrosion</subject><subject>Corrosion environments</subject><subject>Corrosion mechanisms</subject><subject>Geothermal environment</subject><subject>HP-13Cr stainless steel</subject><subject>Morphology</subject><subject>Pitting (corrosion)</subject><subject>Pitting-to-cracking model</subject><subject>Stainless steel</subject><subject>Stainless steels</subject><subject>Stress corrosion cracking</subject><subject>Stress intensity factors</subject><subject>Synergistic effect</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEYRYMoWKtv4CLgemp-5i8bQYragqALBXchk_lmmrFNapIWfHszjmtXgcs5N3wXoWtKFpTQ8nZYaOeDNgtGGE2RKIU4QTNaVyIjuShP0YwQSjLB649zdBHCQAhhKZkhu7bB9JuIjY0Oxw3gED2EgFOjd8E4i7VX-tPYHrsOr14zypc-QcrY7ciFCLBN9q-r-n6UzRFwDy4lfqe2GOzReGd3YOMlOuvUNsDV3ztH748Pb8tV9vzytF7eP2ea8zxmvMk70bRatCBYWxWc0Y5VNC9axfOCN7zRTBPR0qIuWS1UI3jRFlBUumJaiZrP0c3Uu_fu6wAhysEdvE1fSlZUjFV5XY5UPlE6nRo8dHLvzU75b0mJHJeVg5yWleOyclo2aXeTBumCowEvEwFWQ2s86ChbZ_4v-AGXVoTQ</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Qi, Wenlong</creator><creator>Gao, Qiuying</creator><creator>Zhao, Yang</creator><creator>Zhang, Tao</creator><creator>Wang, Fuhui</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>202109</creationdate><title>Insight into the stress corrosion cracking of HP-13Cr stainless steel in the aggressive geothermal environment</title><author>Qi, Wenlong ; Gao, Qiuying ; Zhao, Yang ; Zhang, Tao ; Wang, Fuhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-3b4f9bdc9de92d75321f27145da3453b3bc2c09d1586289ab935d5e57c72ca983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon dioxide</topic><topic>Corrosion</topic><topic>Corrosion environments</topic><topic>Corrosion mechanisms</topic><topic>Geothermal environment</topic><topic>HP-13Cr stainless steel</topic><topic>Morphology</topic><topic>Pitting (corrosion)</topic><topic>Pitting-to-cracking model</topic><topic>Stainless steel</topic><topic>Stainless steels</topic><topic>Stress corrosion cracking</topic><topic>Stress intensity factors</topic><topic>Synergistic effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Wenlong</creatorcontrib><creatorcontrib>Gao, Qiuying</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Wang, Fuhui</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Wenlong</au><au>Gao, Qiuying</au><au>Zhao, Yang</au><au>Zhang, Tao</au><au>Wang, Fuhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insight into the stress corrosion cracking of HP-13Cr stainless steel in the aggressive geothermal environment</atitle><jtitle>Corrosion science</jtitle><date>2021-09</date><risdate>2021</risdate><volume>190</volume><spage>109699</spage><pages>109699-</pages><artnum>109699</artnum><issn>0010-938X</issn><eissn>1879-0496</eissn><abstract>•The effect of temperature and CO2 pressure on the stress corrosion cracking of HP-13Cr stainless steel was proposed.•The stress and strain concentration in pitting area was studied by finite element analysis.•A pitting-to-cracking model has been built to elucidating the initiation of stress corrosion cracking.•A “HTHP-SCC electrochemical system” was developed to conduct the electrochemistry measurement under applied stress. The stress corrosion cracking of HP-13Cr stainless steel in the geothermal environment was studied by experimental measurements and modeling calculations. The stress corrosion cracking susceptibility of HP-13Cr stainless steel increases with both temperature and CO2 pressure, and shows a synergistic effect greater than the temperature or CO2 pressure does singly. The fracture morphologies presented quasi-cleavage fracture characteristic in the geothermal environment. The stress corrosion cracking mechanism is dominated by the anodic process. The critical stress intensity factor for stress corrosion cracking was measured and the pitting-to-cracking process was clarified by a mechanism model.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.corsci.2021.109699</doi></addata></record>
fulltext fulltext
identifier ISSN: 0010-938X
ispartof Corrosion science, 2021-09, Vol.190, p.109699, Article 109699
issn 0010-938X
1879-0496
language eng
recordid cdi_proquest_journals_2572274868
source Elsevier ScienceDirect Journals
subjects Carbon dioxide
Corrosion
Corrosion environments
Corrosion mechanisms
Geothermal environment
HP-13Cr stainless steel
Morphology
Pitting (corrosion)
Pitting-to-cracking model
Stainless steel
Stainless steels
Stress corrosion cracking
Stress intensity factors
Synergistic effect
title Insight into the stress corrosion cracking of HP-13Cr stainless steel in the aggressive geothermal environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A22%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insight%20into%20the%20stress%20corrosion%20cracking%20of%20HP-13Cr%20stainless%20steel%20in%20the%20aggressive%20geothermal%20environment&rft.jtitle=Corrosion%20science&rft.au=Qi,%20Wenlong&rft.date=2021-09&rft.volume=190&rft.spage=109699&rft.pages=109699-&rft.artnum=109699&rft.issn=0010-938X&rft.eissn=1879-0496&rft_id=info:doi/10.1016/j.corsci.2021.109699&rft_dat=%3Cproquest_cross%3E2572274868%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572274868&rft_id=info:pmid/&rft_els_id=S0010938X21004650&rfr_iscdi=true