Insight into the stress corrosion cracking of HP-13Cr stainless steel in the aggressive geothermal environment
•The effect of temperature and CO2 pressure on the stress corrosion cracking of HP-13Cr stainless steel was proposed.•The stress and strain concentration in pitting area was studied by finite element analysis.•A pitting-to-cracking model has been built to elucidating the initiation of stress corrosi...
Gespeichert in:
Veröffentlicht in: | Corrosion science 2021-09, Vol.190, p.109699, Article 109699 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 109699 |
container_title | Corrosion science |
container_volume | 190 |
creator | Qi, Wenlong Gao, Qiuying Zhao, Yang Zhang, Tao Wang, Fuhui |
description | •The effect of temperature and CO2 pressure on the stress corrosion cracking of HP-13Cr stainless steel was proposed.•The stress and strain concentration in pitting area was studied by finite element analysis.•A pitting-to-cracking model has been built to elucidating the initiation of stress corrosion cracking.•A “HTHP-SCC electrochemical system” was developed to conduct the electrochemistry measurement under applied stress.
The stress corrosion cracking of HP-13Cr stainless steel in the geothermal environment was studied by experimental measurements and modeling calculations. The stress corrosion cracking susceptibility of HP-13Cr stainless steel increases with both temperature and CO2 pressure, and shows a synergistic effect greater than the temperature or CO2 pressure does singly. The fracture morphologies presented quasi-cleavage fracture characteristic in the geothermal environment. The stress corrosion cracking mechanism is dominated by the anodic process. The critical stress intensity factor for stress corrosion cracking was measured and the pitting-to-cracking process was clarified by a mechanism model. |
doi_str_mv | 10.1016/j.corsci.2021.109699 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2572274868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X21004650</els_id><sourcerecordid>2572274868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-3b4f9bdc9de92d75321f27145da3453b3bc2c09d1586289ab935d5e57c72ca983</originalsourceid><addsrcrecordid>eNp9kM1KAzEYRYMoWKtv4CLgemp-5i8bQYragqALBXchk_lmmrFNapIWfHszjmtXgcs5N3wXoWtKFpTQ8nZYaOeDNgtGGE2RKIU4QTNaVyIjuShP0YwQSjLB649zdBHCQAhhKZkhu7bB9JuIjY0Oxw3gED2EgFOjd8E4i7VX-tPYHrsOr14zypc-QcrY7ciFCLBN9q-r-n6UzRFwDy4lfqe2GOzReGd3YOMlOuvUNsDV3ztH748Pb8tV9vzytF7eP2ea8zxmvMk70bRatCBYWxWc0Y5VNC9axfOCN7zRTBPR0qIuWS1UI3jRFlBUumJaiZrP0c3Uu_fu6wAhysEdvE1fSlZUjFV5XY5UPlE6nRo8dHLvzU75b0mJHJeVg5yWleOyclo2aXeTBumCowEvEwFWQ2s86ChbZ_4v-AGXVoTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572274868</pqid></control><display><type>article</type><title>Insight into the stress corrosion cracking of HP-13Cr stainless steel in the aggressive geothermal environment</title><source>Elsevier ScienceDirect Journals</source><creator>Qi, Wenlong ; Gao, Qiuying ; Zhao, Yang ; Zhang, Tao ; Wang, Fuhui</creator><creatorcontrib>Qi, Wenlong ; Gao, Qiuying ; Zhao, Yang ; Zhang, Tao ; Wang, Fuhui</creatorcontrib><description>•The effect of temperature and CO2 pressure on the stress corrosion cracking of HP-13Cr stainless steel was proposed.•The stress and strain concentration in pitting area was studied by finite element analysis.•A pitting-to-cracking model has been built to elucidating the initiation of stress corrosion cracking.•A “HTHP-SCC electrochemical system” was developed to conduct the electrochemistry measurement under applied stress.
The stress corrosion cracking of HP-13Cr stainless steel in the geothermal environment was studied by experimental measurements and modeling calculations. The stress corrosion cracking susceptibility of HP-13Cr stainless steel increases with both temperature and CO2 pressure, and shows a synergistic effect greater than the temperature or CO2 pressure does singly. The fracture morphologies presented quasi-cleavage fracture characteristic in the geothermal environment. The stress corrosion cracking mechanism is dominated by the anodic process. The critical stress intensity factor for stress corrosion cracking was measured and the pitting-to-cracking process was clarified by a mechanism model.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/j.corsci.2021.109699</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Carbon dioxide ; Corrosion ; Corrosion environments ; Corrosion mechanisms ; Geothermal environment ; HP-13Cr stainless steel ; Morphology ; Pitting (corrosion) ; Pitting-to-cracking model ; Stainless steel ; Stainless steels ; Stress corrosion cracking ; Stress intensity factors ; Synergistic effect</subject><ispartof>Corrosion science, 2021-09, Vol.190, p.109699, Article 109699</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Sep 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-3b4f9bdc9de92d75321f27145da3453b3bc2c09d1586289ab935d5e57c72ca983</citedby><cites>FETCH-LOGICAL-c334t-3b4f9bdc9de92d75321f27145da3453b3bc2c09d1586289ab935d5e57c72ca983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010938X21004650$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Qi, Wenlong</creatorcontrib><creatorcontrib>Gao, Qiuying</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Wang, Fuhui</creatorcontrib><title>Insight into the stress corrosion cracking of HP-13Cr stainless steel in the aggressive geothermal environment</title><title>Corrosion science</title><description>•The effect of temperature and CO2 pressure on the stress corrosion cracking of HP-13Cr stainless steel was proposed.•The stress and strain concentration in pitting area was studied by finite element analysis.•A pitting-to-cracking model has been built to elucidating the initiation of stress corrosion cracking.•A “HTHP-SCC electrochemical system” was developed to conduct the electrochemistry measurement under applied stress.
The stress corrosion cracking of HP-13Cr stainless steel in the geothermal environment was studied by experimental measurements and modeling calculations. The stress corrosion cracking susceptibility of HP-13Cr stainless steel increases with both temperature and CO2 pressure, and shows a synergistic effect greater than the temperature or CO2 pressure does singly. The fracture morphologies presented quasi-cleavage fracture characteristic in the geothermal environment. The stress corrosion cracking mechanism is dominated by the anodic process. The critical stress intensity factor for stress corrosion cracking was measured and the pitting-to-cracking process was clarified by a mechanism model.</description><subject>Carbon dioxide</subject><subject>Corrosion</subject><subject>Corrosion environments</subject><subject>Corrosion mechanisms</subject><subject>Geothermal environment</subject><subject>HP-13Cr stainless steel</subject><subject>Morphology</subject><subject>Pitting (corrosion)</subject><subject>Pitting-to-cracking model</subject><subject>Stainless steel</subject><subject>Stainless steels</subject><subject>Stress corrosion cracking</subject><subject>Stress intensity factors</subject><subject>Synergistic effect</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEYRYMoWKtv4CLgemp-5i8bQYragqALBXchk_lmmrFNapIWfHszjmtXgcs5N3wXoWtKFpTQ8nZYaOeDNgtGGE2RKIU4QTNaVyIjuShP0YwQSjLB649zdBHCQAhhKZkhu7bB9JuIjY0Oxw3gED2EgFOjd8E4i7VX-tPYHrsOr14zypc-QcrY7ciFCLBN9q-r-n6UzRFwDy4lfqe2GOzReGd3YOMlOuvUNsDV3ztH748Pb8tV9vzytF7eP2ea8zxmvMk70bRatCBYWxWc0Y5VNC9axfOCN7zRTBPR0qIuWS1UI3jRFlBUumJaiZrP0c3Uu_fu6wAhysEdvE1fSlZUjFV5XY5UPlE6nRo8dHLvzU75b0mJHJeVg5yWleOyclo2aXeTBumCowEvEwFWQ2s86ChbZ_4v-AGXVoTQ</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Qi, Wenlong</creator><creator>Gao, Qiuying</creator><creator>Zhao, Yang</creator><creator>Zhang, Tao</creator><creator>Wang, Fuhui</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>202109</creationdate><title>Insight into the stress corrosion cracking of HP-13Cr stainless steel in the aggressive geothermal environment</title><author>Qi, Wenlong ; Gao, Qiuying ; Zhao, Yang ; Zhang, Tao ; Wang, Fuhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-3b4f9bdc9de92d75321f27145da3453b3bc2c09d1586289ab935d5e57c72ca983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon dioxide</topic><topic>Corrosion</topic><topic>Corrosion environments</topic><topic>Corrosion mechanisms</topic><topic>Geothermal environment</topic><topic>HP-13Cr stainless steel</topic><topic>Morphology</topic><topic>Pitting (corrosion)</topic><topic>Pitting-to-cracking model</topic><topic>Stainless steel</topic><topic>Stainless steels</topic><topic>Stress corrosion cracking</topic><topic>Stress intensity factors</topic><topic>Synergistic effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Wenlong</creatorcontrib><creatorcontrib>Gao, Qiuying</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Wang, Fuhui</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Wenlong</au><au>Gao, Qiuying</au><au>Zhao, Yang</au><au>Zhang, Tao</au><au>Wang, Fuhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insight into the stress corrosion cracking of HP-13Cr stainless steel in the aggressive geothermal environment</atitle><jtitle>Corrosion science</jtitle><date>2021-09</date><risdate>2021</risdate><volume>190</volume><spage>109699</spage><pages>109699-</pages><artnum>109699</artnum><issn>0010-938X</issn><eissn>1879-0496</eissn><abstract>•The effect of temperature and CO2 pressure on the stress corrosion cracking of HP-13Cr stainless steel was proposed.•The stress and strain concentration in pitting area was studied by finite element analysis.•A pitting-to-cracking model has been built to elucidating the initiation of stress corrosion cracking.•A “HTHP-SCC electrochemical system” was developed to conduct the electrochemistry measurement under applied stress.
The stress corrosion cracking of HP-13Cr stainless steel in the geothermal environment was studied by experimental measurements and modeling calculations. The stress corrosion cracking susceptibility of HP-13Cr stainless steel increases with both temperature and CO2 pressure, and shows a synergistic effect greater than the temperature or CO2 pressure does singly. The fracture morphologies presented quasi-cleavage fracture characteristic in the geothermal environment. The stress corrosion cracking mechanism is dominated by the anodic process. The critical stress intensity factor for stress corrosion cracking was measured and the pitting-to-cracking process was clarified by a mechanism model.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.corsci.2021.109699</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-938X |
ispartof | Corrosion science, 2021-09, Vol.190, p.109699, Article 109699 |
issn | 0010-938X 1879-0496 |
language | eng |
recordid | cdi_proquest_journals_2572274868 |
source | Elsevier ScienceDirect Journals |
subjects | Carbon dioxide Corrosion Corrosion environments Corrosion mechanisms Geothermal environment HP-13Cr stainless steel Morphology Pitting (corrosion) Pitting-to-cracking model Stainless steel Stainless steels Stress corrosion cracking Stress intensity factors Synergistic effect |
title | Insight into the stress corrosion cracking of HP-13Cr stainless steel in the aggressive geothermal environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A22%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insight%20into%20the%20stress%20corrosion%20cracking%20of%20HP-13Cr%20stainless%20steel%20in%20the%20aggressive%20geothermal%20environment&rft.jtitle=Corrosion%20science&rft.au=Qi,%20Wenlong&rft.date=2021-09&rft.volume=190&rft.spage=109699&rft.pages=109699-&rft.artnum=109699&rft.issn=0010-938X&rft.eissn=1879-0496&rft_id=info:doi/10.1016/j.corsci.2021.109699&rft_dat=%3Cproquest_cross%3E2572274868%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572274868&rft_id=info:pmid/&rft_els_id=S0010938X21004650&rfr_iscdi=true |