Generalizing a model for animating adverbs of manner in American Sign Language
This work aims to show that a model produced to generate adverbs of manner can be generalized and applied to a variety of neutral animated signs for avatar sign language synthesis. This paper presents the generalization of a new approach that was first presented at SLTAT 2019 in Hamburg for modeling...
Gespeichert in:
Veröffentlicht in: | Machine translation 2021-09, Vol.35 (3), p.345-362 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 362 |
---|---|
container_issue | 3 |
container_start_page | 345 |
container_title | Machine translation |
container_volume | 35 |
creator | Moncrief, Robyn |
description | This work aims to show that a model produced to generate adverbs of manner can be generalized and applied to a variety of neutral animated signs for avatar sign language synthesis. This paper presents the generalization of a new approach that was first presented at SLTAT 2019 in Hamburg for modeling language processes that manifest themselves as modifications to the visual-manual channel. This work discusses extensions for generalizability to the model to be effective for a broader range of signs including one-handed and two-handed signs, repeating and non-repeating signs, signs with contact, and additional rotational adjustments to the wrists. This paper also includes interim results from an ongoing user study. |
doi_str_mv | 10.1007/s10590-021-09279-9 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2572251079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48758543</jstor_id><sourcerecordid>48758543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-ee03b4a0a665f53091a8a270c99e7e5687df9e6465e0b127b210cc8c1bbc64573</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_QBACnqOT7CbZHEvRKhQ9qOeQ3c4uW7rZmmwF_fWmXdGblxl4vG8e8wi55HDDAfRt5CANMBCcgRHaMHNEJlzqjEEax2SSVMGUVPqUnMW4BkgYZBPytECPwW3ar9Y31NGuX-GG1n2gzredGw7q6gNDGWlf0875ZKetp7MOQ1s5T1_axtOl883ONXhOTmq3iXjxs6fk7f7udf7Als-Lx_lsySphxMAQIStzB04pWcsMDHeFExoqY1CjVIVe1QZVriRCyYUuBYeqKipelpXK00dTcj3e3Yb-fYdxsOt-F3yKtEJqISQHbZJLjK4q9DEGrO02pKfCp-Vg973ZsTeberOH3uweykYoJrNvMPyd_pe6Gql1HPrwm5MXWhYyz7Jvtpt49Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572251079</pqid></control><display><type>article</type><title>Generalizing a model for animating adverbs of manner in American Sign Language</title><source>SpringerLink Journals - AutoHoldings</source><creator>Moncrief, Robyn</creator><creatorcontrib>Moncrief, Robyn</creatorcontrib><description>This work aims to show that a model produced to generate adverbs of manner can be generalized and applied to a variety of neutral animated signs for avatar sign language synthesis. This paper presents the generalization of a new approach that was first presented at SLTAT 2019 in Hamburg for modeling language processes that manifest themselves as modifications to the visual-manual channel. This work discusses extensions for generalizability to the model to be effective for a broader range of signs including one-handed and two-handed signs, repeating and non-repeating signs, signs with contact, and additional rotational adjustments to the wrists. This paper also includes interim results from an ongoing user study.</description><identifier>ISSN: 0922-6567</identifier><identifier>EISSN: 1573-0573</identifier><identifier>DOI: 10.1007/s10590-021-09279-9</identifier><language>eng</language><publisher>Dordrecht: Springer Science + Business Media</publisher><subject>Adverbs ; American Sign Language ; Artificial Intelligence ; Avatars ; Computational Linguistics ; Computer Science ; Generalization ; Motion ; Natural Language Processing (NLP) ; Sign language</subject><ispartof>Machine translation, 2021-09, Vol.35 (3), p.345-362</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c292t-ee03b4a0a665f53091a8a270c99e7e5687df9e6465e0b127b210cc8c1bbc64573</cites><orcidid>0000-0003-4777-8437</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10590-021-09279-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10590-021-09279-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Moncrief, Robyn</creatorcontrib><title>Generalizing a model for animating adverbs of manner in American Sign Language</title><title>Machine translation</title><addtitle>Machine Translation</addtitle><description>This work aims to show that a model produced to generate adverbs of manner can be generalized and applied to a variety of neutral animated signs for avatar sign language synthesis. This paper presents the generalization of a new approach that was first presented at SLTAT 2019 in Hamburg for modeling language processes that manifest themselves as modifications to the visual-manual channel. This work discusses extensions for generalizability to the model to be effective for a broader range of signs including one-handed and two-handed signs, repeating and non-repeating signs, signs with contact, and additional rotational adjustments to the wrists. This paper also includes interim results from an ongoing user study.</description><subject>Adverbs</subject><subject>American Sign Language</subject><subject>Artificial Intelligence</subject><subject>Avatars</subject><subject>Computational Linguistics</subject><subject>Computer Science</subject><subject>Generalization</subject><subject>Motion</subject><subject>Natural Language Processing (NLP)</subject><subject>Sign language</subject><issn>0922-6567</issn><issn>1573-0573</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKt_QBACnqOT7CbZHEvRKhQ9qOeQ3c4uW7rZmmwF_fWmXdGblxl4vG8e8wi55HDDAfRt5CANMBCcgRHaMHNEJlzqjEEax2SSVMGUVPqUnMW4BkgYZBPytECPwW3ar9Y31NGuX-GG1n2gzredGw7q6gNDGWlf0875ZKetp7MOQ1s5T1_axtOl883ONXhOTmq3iXjxs6fk7f7udf7Als-Lx_lsySphxMAQIStzB04pWcsMDHeFExoqY1CjVIVe1QZVriRCyYUuBYeqKipelpXK00dTcj3e3Yb-fYdxsOt-F3yKtEJqISQHbZJLjK4q9DEGrO02pKfCp-Vg973ZsTeberOH3uweykYoJrNvMPyd_pe6Gql1HPrwm5MXWhYyz7Jvtpt49Q</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Moncrief, Robyn</creator><general>Springer Science + Business Media</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T9</scope><orcidid>https://orcid.org/0000-0003-4777-8437</orcidid></search><sort><creationdate>20210901</creationdate><title>Generalizing a model for animating adverbs of manner in American Sign Language</title><author>Moncrief, Robyn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-ee03b4a0a665f53091a8a270c99e7e5687df9e6465e0b127b210cc8c1bbc64573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adverbs</topic><topic>American Sign Language</topic><topic>Artificial Intelligence</topic><topic>Avatars</topic><topic>Computational Linguistics</topic><topic>Computer Science</topic><topic>Generalization</topic><topic>Motion</topic><topic>Natural Language Processing (NLP)</topic><topic>Sign language</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moncrief, Robyn</creatorcontrib><collection>CrossRef</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><jtitle>Machine translation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moncrief, Robyn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalizing a model for animating adverbs of manner in American Sign Language</atitle><jtitle>Machine translation</jtitle><stitle>Machine Translation</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>35</volume><issue>3</issue><spage>345</spage><epage>362</epage><pages>345-362</pages><issn>0922-6567</issn><eissn>1573-0573</eissn><abstract>This work aims to show that a model produced to generate adverbs of manner can be generalized and applied to a variety of neutral animated signs for avatar sign language synthesis. This paper presents the generalization of a new approach that was first presented at SLTAT 2019 in Hamburg for modeling language processes that manifest themselves as modifications to the visual-manual channel. This work discusses extensions for generalizability to the model to be effective for a broader range of signs including one-handed and two-handed signs, repeating and non-repeating signs, signs with contact, and additional rotational adjustments to the wrists. This paper also includes interim results from an ongoing user study.</abstract><cop>Dordrecht</cop><pub>Springer Science + Business Media</pub><doi>10.1007/s10590-021-09279-9</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4777-8437</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0922-6567 |
ispartof | Machine translation, 2021-09, Vol.35 (3), p.345-362 |
issn | 0922-6567 1573-0573 |
language | eng |
recordid | cdi_proquest_journals_2572251079 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adverbs American Sign Language Artificial Intelligence Avatars Computational Linguistics Computer Science Generalization Motion Natural Language Processing (NLP) Sign language |
title | Generalizing a model for animating adverbs of manner in American Sign Language |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A35%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalizing%20a%20model%20for%20animating%20adverbs%20of%20manner%20in%20American%20Sign%20Language&rft.jtitle=Machine%20translation&rft.au=Moncrief,%20Robyn&rft.date=2021-09-01&rft.volume=35&rft.issue=3&rft.spage=345&rft.epage=362&rft.pages=345-362&rft.issn=0922-6567&rft.eissn=1573-0573&rft_id=info:doi/10.1007/s10590-021-09279-9&rft_dat=%3Cjstor_proqu%3E48758543%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572251079&rft_id=info:pmid/&rft_jstor_id=48758543&rfr_iscdi=true |