Jeffreys-prior penalty, finiteness and shrinkage in binomial-response generalized linear models

Summary Penalization of the likelihood by Jeffreys’ invariant prior, or a positive power thereof, is shown to produce finite-valued maximum penalized likelihood estimates in a broad class of binomial generalized linear models. The class of models includes logistic regression, where the Jeffreys-prio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2021-03, Vol.108 (1), p.71-82
Hauptverfasser: Kosmidis, Ioannis, Firth, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 82
container_issue 1
container_start_page 71
container_title Biometrika
container_volume 108
creator Kosmidis, Ioannis
Firth, David
description Summary Penalization of the likelihood by Jeffreys’ invariant prior, or a positive power thereof, is shown to produce finite-valued maximum penalized likelihood estimates in a broad class of binomial generalized linear models. The class of models includes logistic regression, where the Jeffreys-prior penalty is known additionally to reduce the asymptotic bias of the maximum likelihood estimator, and models with other commonly used link functions, such as probit and log-log. Shrinkage towards equiprobability across observations, relative to the maximum likelihood estimator, is established theoretically and studied through illustrative examples. Some implications of finiteness and shrinkage for inference are discussed, particularly when inference is based on Wald-type procedures. A widely applicable procedure is developed for computation of maximum penalized likelihood estimates, by using repeated maximum likelihood fits with iteratively adjusted binomial responses and totals. These theoretical results and methods underpin the increasingly widespread use of reduced-bias and similarly penalized binomial regression models in many applied fields.
doi_str_mv 10.1093/biomet/asaa052
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2572250664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/biomet/asaa052</oup_id><sourcerecordid>2572250664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-69a77168ac9648c39978437fa3981313632870ca43060561b538f5ea5782ef3f3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKtb1wFXgmOTyWtmKcUnBTe6DrfTm5o6k4zJdFF_vVPavavLhe8c-A4h15zdc1aL2dLHDocZZACmyhMy4VLLQijOTsmEMaYLIaU8Jxc5b_avVnpC7Bs6l3CXiz75mGiPAdphd0edD37AgDlTCCuav5IP37BG6gNd-hA7D22RMPcxZKTrkUzQ-l9c0dYHhES7uMI2X5IzB23Gq-Odks-nx4_5S7F4f36dPyyKRjIzFLoGY7iuoKm1rBpR16aSwjgQdcUFF1qUlWENSME0U5ovlaicQlCmKtEJJ6bk5tDbp_izxTzYTdym0SXbUpmyVKOvHKn7A9WkmHNCZ0frDtLOcmb3I9rDiPY44hi4PQTitv-P_QNmDXWc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572250664</pqid></control><display><type>article</type><title>Jeffreys-prior penalty, finiteness and shrinkage in binomial-response generalized linear models</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Kosmidis, Ioannis ; Firth, David</creator><creatorcontrib>Kosmidis, Ioannis ; Firth, David</creatorcontrib><description>Summary Penalization of the likelihood by Jeffreys’ invariant prior, or a positive power thereof, is shown to produce finite-valued maximum penalized likelihood estimates in a broad class of binomial generalized linear models. The class of models includes logistic regression, where the Jeffreys-prior penalty is known additionally to reduce the asymptotic bias of the maximum likelihood estimator, and models with other commonly used link functions, such as probit and log-log. Shrinkage towards equiprobability across observations, relative to the maximum likelihood estimator, is established theoretically and studied through illustrative examples. Some implications of finiteness and shrinkage for inference are discussed, particularly when inference is based on Wald-type procedures. A widely applicable procedure is developed for computation of maximum penalized likelihood estimates, by using repeated maximum likelihood fits with iteratively adjusted binomial responses and totals. These theoretical results and methods underpin the increasingly widespread use of reduced-bias and similarly penalized binomial regression models in many applied fields.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asaa052</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Bias ; Estimates ; Generalized linear models ; Inference ; Maximum likelihood estimators ; Regression analysis ; Regression models ; Shrinkage ; Statistical models</subject><ispartof>Biometrika, 2021-03, Vol.108 (1), p.71-82</ispartof><rights>2020 Biometrika Trust 2020</rights><rights>2020 Biometrika Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-69a77168ac9648c39978437fa3981313632870ca43060561b538f5ea5782ef3f3</citedby><cites>FETCH-LOGICAL-c407t-69a77168ac9648c39978437fa3981313632870ca43060561b538f5ea5782ef3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27903,27904</link.rule.ids></links><search><creatorcontrib>Kosmidis, Ioannis</creatorcontrib><creatorcontrib>Firth, David</creatorcontrib><title>Jeffreys-prior penalty, finiteness and shrinkage in binomial-response generalized linear models</title><title>Biometrika</title><description>Summary Penalization of the likelihood by Jeffreys’ invariant prior, or a positive power thereof, is shown to produce finite-valued maximum penalized likelihood estimates in a broad class of binomial generalized linear models. The class of models includes logistic regression, where the Jeffreys-prior penalty is known additionally to reduce the asymptotic bias of the maximum likelihood estimator, and models with other commonly used link functions, such as probit and log-log. Shrinkage towards equiprobability across observations, relative to the maximum likelihood estimator, is established theoretically and studied through illustrative examples. Some implications of finiteness and shrinkage for inference are discussed, particularly when inference is based on Wald-type procedures. A widely applicable procedure is developed for computation of maximum penalized likelihood estimates, by using repeated maximum likelihood fits with iteratively adjusted binomial responses and totals. These theoretical results and methods underpin the increasingly widespread use of reduced-bias and similarly penalized binomial regression models in many applied fields.</description><subject>Bias</subject><subject>Estimates</subject><subject>Generalized linear models</subject><subject>Inference</subject><subject>Maximum likelihood estimators</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Shrinkage</subject><subject>Statistical models</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkEtLAzEUhYMoWKtb1wFXgmOTyWtmKcUnBTe6DrfTm5o6k4zJdFF_vVPavavLhe8c-A4h15zdc1aL2dLHDocZZACmyhMy4VLLQijOTsmEMaYLIaU8Jxc5b_avVnpC7Bs6l3CXiz75mGiPAdphd0edD37AgDlTCCuav5IP37BG6gNd-hA7D22RMPcxZKTrkUzQ-l9c0dYHhES7uMI2X5IzB23Gq-Odks-nx4_5S7F4f36dPyyKRjIzFLoGY7iuoKm1rBpR16aSwjgQdcUFF1qUlWENSME0U5ovlaicQlCmKtEJJ6bk5tDbp_izxTzYTdym0SXbUpmyVKOvHKn7A9WkmHNCZ0frDtLOcmb3I9rDiPY44hi4PQTitv-P_QNmDXWc</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Kosmidis, Ioannis</creator><creator>Firth, David</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20210301</creationdate><title>Jeffreys-prior penalty, finiteness and shrinkage in binomial-response generalized linear models</title><author>Kosmidis, Ioannis ; Firth, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-69a77168ac9648c39978437fa3981313632870ca43060561b538f5ea5782ef3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bias</topic><topic>Estimates</topic><topic>Generalized linear models</topic><topic>Inference</topic><topic>Maximum likelihood estimators</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Shrinkage</topic><topic>Statistical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kosmidis, Ioannis</creatorcontrib><creatorcontrib>Firth, David</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kosmidis, Ioannis</au><au>Firth, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Jeffreys-prior penalty, finiteness and shrinkage in binomial-response generalized linear models</atitle><jtitle>Biometrika</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>108</volume><issue>1</issue><spage>71</spage><epage>82</epage><pages>71-82</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><abstract>Summary Penalization of the likelihood by Jeffreys’ invariant prior, or a positive power thereof, is shown to produce finite-valued maximum penalized likelihood estimates in a broad class of binomial generalized linear models. The class of models includes logistic regression, where the Jeffreys-prior penalty is known additionally to reduce the asymptotic bias of the maximum likelihood estimator, and models with other commonly used link functions, such as probit and log-log. Shrinkage towards equiprobability across observations, relative to the maximum likelihood estimator, is established theoretically and studied through illustrative examples. Some implications of finiteness and shrinkage for inference are discussed, particularly when inference is based on Wald-type procedures. A widely applicable procedure is developed for computation of maximum penalized likelihood estimates, by using repeated maximum likelihood fits with iteratively adjusted binomial responses and totals. These theoretical results and methods underpin the increasingly widespread use of reduced-bias and similarly penalized binomial regression models in many applied fields.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/biomet/asaa052</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 2021-03, Vol.108 (1), p.71-82
issn 0006-3444
1464-3510
language eng
recordid cdi_proquest_journals_2572250664
source Oxford University Press Journals All Titles (1996-Current)
subjects Bias
Estimates
Generalized linear models
Inference
Maximum likelihood estimators
Regression analysis
Regression models
Shrinkage
Statistical models
title Jeffreys-prior penalty, finiteness and shrinkage in binomial-response generalized linear models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T21%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Jeffreys-prior%20penalty,%20finiteness%20and%20shrinkage%20in%20binomial-response%20generalized%20linear%20models&rft.jtitle=Biometrika&rft.au=Kosmidis,%20Ioannis&rft.date=2021-03-01&rft.volume=108&rft.issue=1&rft.spage=71&rft.epage=82&rft.pages=71-82&rft.issn=0006-3444&rft.eissn=1464-3510&rft_id=info:doi/10.1093/biomet/asaa052&rft_dat=%3Cproquest_cross%3E2572250664%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572250664&rft_id=info:pmid/&rft_oup_id=10.1093/biomet/asaa052&rfr_iscdi=true