Jeffreys-prior penalty, finiteness and shrinkage in binomial-response generalized linear models
Summary Penalization of the likelihood by Jeffreys’ invariant prior, or a positive power thereof, is shown to produce finite-valued maximum penalized likelihood estimates in a broad class of binomial generalized linear models. The class of models includes logistic regression, where the Jeffreys-prio...
Gespeichert in:
Veröffentlicht in: | Biometrika 2021-03, Vol.108 (1), p.71-82 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 82 |
---|---|
container_issue | 1 |
container_start_page | 71 |
container_title | Biometrika |
container_volume | 108 |
creator | Kosmidis, Ioannis Firth, David |
description | Summary
Penalization of the likelihood by Jeffreys’ invariant prior, or a positive power thereof, is shown to produce finite-valued maximum penalized likelihood estimates in a broad class of binomial generalized linear models. The class of models includes logistic regression, where the Jeffreys-prior penalty is known additionally to reduce the asymptotic bias of the maximum likelihood estimator, and models with other commonly used link functions, such as probit and log-log. Shrinkage towards equiprobability across observations, relative to the maximum likelihood estimator, is established theoretically and studied through illustrative examples. Some implications of finiteness and shrinkage for inference are discussed, particularly when inference is based on Wald-type procedures. A widely applicable procedure is developed for computation of maximum penalized likelihood estimates, by using repeated maximum likelihood fits with iteratively adjusted binomial responses and totals. These theoretical results and methods underpin the increasingly widespread use of reduced-bias and similarly penalized binomial regression models in many applied fields. |
doi_str_mv | 10.1093/biomet/asaa052 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2572250664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/biomet/asaa052</oup_id><sourcerecordid>2572250664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-69a77168ac9648c39978437fa3981313632870ca43060561b538f5ea5782ef3f3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKtb1wFXgmOTyWtmKcUnBTe6DrfTm5o6k4zJdFF_vVPavavLhe8c-A4h15zdc1aL2dLHDocZZACmyhMy4VLLQijOTsmEMaYLIaU8Jxc5b_avVnpC7Bs6l3CXiz75mGiPAdphd0edD37AgDlTCCuav5IP37BG6gNd-hA7D22RMPcxZKTrkUzQ-l9c0dYHhES7uMI2X5IzB23Gq-Odks-nx4_5S7F4f36dPyyKRjIzFLoGY7iuoKm1rBpR16aSwjgQdcUFF1qUlWENSME0U5ovlaicQlCmKtEJJ6bk5tDbp_izxTzYTdym0SXbUpmyVKOvHKn7A9WkmHNCZ0frDtLOcmb3I9rDiPY44hi4PQTitv-P_QNmDXWc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572250664</pqid></control><display><type>article</type><title>Jeffreys-prior penalty, finiteness and shrinkage in binomial-response generalized linear models</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Kosmidis, Ioannis ; Firth, David</creator><creatorcontrib>Kosmidis, Ioannis ; Firth, David</creatorcontrib><description>Summary
Penalization of the likelihood by Jeffreys’ invariant prior, or a positive power thereof, is shown to produce finite-valued maximum penalized likelihood estimates in a broad class of binomial generalized linear models. The class of models includes logistic regression, where the Jeffreys-prior penalty is known additionally to reduce the asymptotic bias of the maximum likelihood estimator, and models with other commonly used link functions, such as probit and log-log. Shrinkage towards equiprobability across observations, relative to the maximum likelihood estimator, is established theoretically and studied through illustrative examples. Some implications of finiteness and shrinkage for inference are discussed, particularly when inference is based on Wald-type procedures. A widely applicable procedure is developed for computation of maximum penalized likelihood estimates, by using repeated maximum likelihood fits with iteratively adjusted binomial responses and totals. These theoretical results and methods underpin the increasingly widespread use of reduced-bias and similarly penalized binomial regression models in many applied fields.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asaa052</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Bias ; Estimates ; Generalized linear models ; Inference ; Maximum likelihood estimators ; Regression analysis ; Regression models ; Shrinkage ; Statistical models</subject><ispartof>Biometrika, 2021-03, Vol.108 (1), p.71-82</ispartof><rights>2020 Biometrika Trust 2020</rights><rights>2020 Biometrika Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-69a77168ac9648c39978437fa3981313632870ca43060561b538f5ea5782ef3f3</citedby><cites>FETCH-LOGICAL-c407t-69a77168ac9648c39978437fa3981313632870ca43060561b538f5ea5782ef3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27903,27904</link.rule.ids></links><search><creatorcontrib>Kosmidis, Ioannis</creatorcontrib><creatorcontrib>Firth, David</creatorcontrib><title>Jeffreys-prior penalty, finiteness and shrinkage in binomial-response generalized linear models</title><title>Biometrika</title><description>Summary
Penalization of the likelihood by Jeffreys’ invariant prior, or a positive power thereof, is shown to produce finite-valued maximum penalized likelihood estimates in a broad class of binomial generalized linear models. The class of models includes logistic regression, where the Jeffreys-prior penalty is known additionally to reduce the asymptotic bias of the maximum likelihood estimator, and models with other commonly used link functions, such as probit and log-log. Shrinkage towards equiprobability across observations, relative to the maximum likelihood estimator, is established theoretically and studied through illustrative examples. Some implications of finiteness and shrinkage for inference are discussed, particularly when inference is based on Wald-type procedures. A widely applicable procedure is developed for computation of maximum penalized likelihood estimates, by using repeated maximum likelihood fits with iteratively adjusted binomial responses and totals. These theoretical results and methods underpin the increasingly widespread use of reduced-bias and similarly penalized binomial regression models in many applied fields.</description><subject>Bias</subject><subject>Estimates</subject><subject>Generalized linear models</subject><subject>Inference</subject><subject>Maximum likelihood estimators</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Shrinkage</subject><subject>Statistical models</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkEtLAzEUhYMoWKtb1wFXgmOTyWtmKcUnBTe6DrfTm5o6k4zJdFF_vVPavavLhe8c-A4h15zdc1aL2dLHDocZZACmyhMy4VLLQijOTsmEMaYLIaU8Jxc5b_avVnpC7Bs6l3CXiz75mGiPAdphd0edD37AgDlTCCuav5IP37BG6gNd-hA7D22RMPcxZKTrkUzQ-l9c0dYHhES7uMI2X5IzB23Gq-Odks-nx4_5S7F4f36dPyyKRjIzFLoGY7iuoKm1rBpR16aSwjgQdcUFF1qUlWENSME0U5ovlaicQlCmKtEJJ6bk5tDbp_izxTzYTdym0SXbUpmyVKOvHKn7A9WkmHNCZ0frDtLOcmb3I9rDiPY44hi4PQTitv-P_QNmDXWc</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Kosmidis, Ioannis</creator><creator>Firth, David</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20210301</creationdate><title>Jeffreys-prior penalty, finiteness and shrinkage in binomial-response generalized linear models</title><author>Kosmidis, Ioannis ; Firth, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-69a77168ac9648c39978437fa3981313632870ca43060561b538f5ea5782ef3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bias</topic><topic>Estimates</topic><topic>Generalized linear models</topic><topic>Inference</topic><topic>Maximum likelihood estimators</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Shrinkage</topic><topic>Statistical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kosmidis, Ioannis</creatorcontrib><creatorcontrib>Firth, David</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kosmidis, Ioannis</au><au>Firth, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Jeffreys-prior penalty, finiteness and shrinkage in binomial-response generalized linear models</atitle><jtitle>Biometrika</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>108</volume><issue>1</issue><spage>71</spage><epage>82</epage><pages>71-82</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><abstract>Summary
Penalization of the likelihood by Jeffreys’ invariant prior, or a positive power thereof, is shown to produce finite-valued maximum penalized likelihood estimates in a broad class of binomial generalized linear models. The class of models includes logistic regression, where the Jeffreys-prior penalty is known additionally to reduce the asymptotic bias of the maximum likelihood estimator, and models with other commonly used link functions, such as probit and log-log. Shrinkage towards equiprobability across observations, relative to the maximum likelihood estimator, is established theoretically and studied through illustrative examples. Some implications of finiteness and shrinkage for inference are discussed, particularly when inference is based on Wald-type procedures. A widely applicable procedure is developed for computation of maximum penalized likelihood estimates, by using repeated maximum likelihood fits with iteratively adjusted binomial responses and totals. These theoretical results and methods underpin the increasingly widespread use of reduced-bias and similarly penalized binomial regression models in many applied fields.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/biomet/asaa052</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3444 |
ispartof | Biometrika, 2021-03, Vol.108 (1), p.71-82 |
issn | 0006-3444 1464-3510 |
language | eng |
recordid | cdi_proquest_journals_2572250664 |
source | Oxford University Press Journals All Titles (1996-Current) |
subjects | Bias Estimates Generalized linear models Inference Maximum likelihood estimators Regression analysis Regression models Shrinkage Statistical models |
title | Jeffreys-prior penalty, finiteness and shrinkage in binomial-response generalized linear models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T21%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Jeffreys-prior%20penalty,%20finiteness%20and%20shrinkage%20in%20binomial-response%20generalized%20linear%20models&rft.jtitle=Biometrika&rft.au=Kosmidis,%20Ioannis&rft.date=2021-03-01&rft.volume=108&rft.issue=1&rft.spage=71&rft.epage=82&rft.pages=71-82&rft.issn=0006-3444&rft.eissn=1464-3510&rft_id=info:doi/10.1093/biomet/asaa052&rft_dat=%3Cproquest_cross%3E2572250664%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572250664&rft_id=info:pmid/&rft_oup_id=10.1093/biomet/asaa052&rfr_iscdi=true |