Matrix-variate logistic regression with measurement error

Summary Measurement error in covariates has been extensively studied in many conventional regression settings where covariate information is typically expressed in a vector form. However, there has been little work on error-prone matrix-variate data, which commonly arise from studies with imaging, s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2021-03, Vol.108 (1), p.83-97
Hauptverfasser: Fang, Junhan, Yi, Grace Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 97
container_issue 1
container_start_page 83
container_title Biometrika
container_volume 108
creator Fang, Junhan
Yi, Grace Y
description Summary Measurement error in covariates has been extensively studied in many conventional regression settings where covariate information is typically expressed in a vector form. However, there has been little work on error-prone matrix-variate data, which commonly arise from studies with imaging, spatial-temporal structures, etc. We consider analysis of error-contaminated matrix-variate data. We particularly focus on matrix-variate logistic measurement error models. We examine the biases induced from naive analysis which ignores measurement error in matrix-variate data. Two measurement error correction methods are developed to adjust for measurement error effects. The proposed methods are justified both theoretically and empirically. We analyse an electroencephalography dataset with the proposed methods.
doi_str_mv 10.1093/biomet/asaa056
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2572250629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/biomet/asaa056</oup_id><sourcerecordid>2572250629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-3bb04f7c363f64e04c91f7bea6332cac964fbf1ffd9e97410e0353f1166fd30f3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKtb1wOuXEx7M8lkyFKKL6i40XXIpDc1pdOMNxkf_96W6d7V5cB3zoWPsWsOMw5azNsQO8xzm6yFWp2wCZdKlqLmcMomAKBKIaU8ZxcpbQ5R1WrC9IvNFH7KL0vBZiy2cR1SDq4gXBOmFOKu-A75o-jQpoGww10ukCjSJTvzdpvw6nin7P3h_m3xVC5fH58Xd8vSCeC5FG0L0jdOKOGVRJBOc9-0aJUQlbNOK-lbz71fadSN5IAgauE5V8qvBHgxZTfjbk_xc8CUzSYOtNu_NFXdVFUNqtJ7ajZSjmJKhN70FDpLv4aDOegxox5z1LMv3I6FOPT_sX94BWly</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572250629</pqid></control><display><type>article</type><title>Matrix-variate logistic regression with measurement error</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Fang, Junhan ; Yi, Grace Y</creator><creatorcontrib>Fang, Junhan ; Yi, Grace Y</creatorcontrib><description>Summary Measurement error in covariates has been extensively studied in many conventional regression settings where covariate information is typically expressed in a vector form. However, there has been little work on error-prone matrix-variate data, which commonly arise from studies with imaging, spatial-temporal structures, etc. We consider analysis of error-contaminated matrix-variate data. We particularly focus on matrix-variate logistic measurement error models. We examine the biases induced from naive analysis which ignores measurement error in matrix-variate data. Two measurement error correction methods are developed to adjust for measurement error effects. The proposed methods are justified both theoretically and empirically. We analyse an electroencephalography dataset with the proposed methods.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asaa056</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>EEG ; Electroencephalography ; Error analysis ; Error correction ; Mathematical analysis</subject><ispartof>Biometrika, 2021-03, Vol.108 (1), p.83-97</ispartof><rights>2020 Biometrika Trust 2020</rights><rights>2020 Biometrika Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-3bb04f7c363f64e04c91f7bea6332cac964fbf1ffd9e97410e0353f1166fd30f3</citedby><cites>FETCH-LOGICAL-c301t-3bb04f7c363f64e04c91f7bea6332cac964fbf1ffd9e97410e0353f1166fd30f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1584,27924,27925</link.rule.ids></links><search><creatorcontrib>Fang, Junhan</creatorcontrib><creatorcontrib>Yi, Grace Y</creatorcontrib><title>Matrix-variate logistic regression with measurement error</title><title>Biometrika</title><description>Summary Measurement error in covariates has been extensively studied in many conventional regression settings where covariate information is typically expressed in a vector form. However, there has been little work on error-prone matrix-variate data, which commonly arise from studies with imaging, spatial-temporal structures, etc. We consider analysis of error-contaminated matrix-variate data. We particularly focus on matrix-variate logistic measurement error models. We examine the biases induced from naive analysis which ignores measurement error in matrix-variate data. Two measurement error correction methods are developed to adjust for measurement error effects. The proposed methods are justified both theoretically and empirically. We analyse an electroencephalography dataset with the proposed methods.</description><subject>EEG</subject><subject>Electroencephalography</subject><subject>Error analysis</subject><subject>Error correction</subject><subject>Mathematical analysis</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKtb1wOuXEx7M8lkyFKKL6i40XXIpDc1pdOMNxkf_96W6d7V5cB3zoWPsWsOMw5azNsQO8xzm6yFWp2wCZdKlqLmcMomAKBKIaU8ZxcpbQ5R1WrC9IvNFH7KL0vBZiy2cR1SDq4gXBOmFOKu-A75o-jQpoGww10ukCjSJTvzdpvw6nin7P3h_m3xVC5fH58Xd8vSCeC5FG0L0jdOKOGVRJBOc9-0aJUQlbNOK-lbz71fadSN5IAgauE5V8qvBHgxZTfjbk_xc8CUzSYOtNu_NFXdVFUNqtJ7ajZSjmJKhN70FDpLv4aDOegxox5z1LMv3I6FOPT_sX94BWly</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Fang, Junhan</creator><creator>Yi, Grace Y</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20210301</creationdate><title>Matrix-variate logistic regression with measurement error</title><author>Fang, Junhan ; Yi, Grace Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-3bb04f7c363f64e04c91f7bea6332cac964fbf1ffd9e97410e0353f1166fd30f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>EEG</topic><topic>Electroencephalography</topic><topic>Error analysis</topic><topic>Error correction</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Junhan</creatorcontrib><creatorcontrib>Yi, Grace Y</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Junhan</au><au>Yi, Grace Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matrix-variate logistic regression with measurement error</atitle><jtitle>Biometrika</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>108</volume><issue>1</issue><spage>83</spage><epage>97</epage><pages>83-97</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><abstract>Summary Measurement error in covariates has been extensively studied in many conventional regression settings where covariate information is typically expressed in a vector form. However, there has been little work on error-prone matrix-variate data, which commonly arise from studies with imaging, spatial-temporal structures, etc. We consider analysis of error-contaminated matrix-variate data. We particularly focus on matrix-variate logistic measurement error models. We examine the biases induced from naive analysis which ignores measurement error in matrix-variate data. Two measurement error correction methods are developed to adjust for measurement error effects. The proposed methods are justified both theoretically and empirically. We analyse an electroencephalography dataset with the proposed methods.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/biomet/asaa056</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 2021-03, Vol.108 (1), p.83-97
issn 0006-3444
1464-3510
language eng
recordid cdi_proquest_journals_2572250629
source Oxford University Press Journals All Titles (1996-Current)
subjects EEG
Electroencephalography
Error analysis
Error correction
Mathematical analysis
title Matrix-variate logistic regression with measurement error
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A59%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matrix-variate%20logistic%20regression%20with%20measurement%20error&rft.jtitle=Biometrika&rft.au=Fang,%20Junhan&rft.date=2021-03-01&rft.volume=108&rft.issue=1&rft.spage=83&rft.epage=97&rft.pages=83-97&rft.issn=0006-3444&rft.eissn=1464-3510&rft_id=info:doi/10.1093/biomet/asaa056&rft_dat=%3Cproquest_cross%3E2572250629%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572250629&rft_id=info:pmid/&rft_oup_id=10.1093/biomet/asaa056&rfr_iscdi=true