Matrix-variate logistic regression with measurement error
Summary Measurement error in covariates has been extensively studied in many conventional regression settings where covariate information is typically expressed in a vector form. However, there has been little work on error-prone matrix-variate data, which commonly arise from studies with imaging, s...
Gespeichert in:
Veröffentlicht in: | Biometrika 2021-03, Vol.108 (1), p.83-97 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 97 |
---|---|
container_issue | 1 |
container_start_page | 83 |
container_title | Biometrika |
container_volume | 108 |
creator | Fang, Junhan Yi, Grace Y |
description | Summary
Measurement error in covariates has been extensively studied in many conventional regression settings where covariate information is typically expressed in a vector form. However, there has been little work on error-prone matrix-variate data, which commonly arise from studies with imaging, spatial-temporal structures, etc. We consider analysis of error-contaminated matrix-variate data. We particularly focus on matrix-variate logistic measurement error models. We examine the biases induced from naive analysis which ignores measurement error in matrix-variate data. Two measurement error correction methods are developed to adjust for measurement error effects. The proposed methods are justified both theoretically and empirically. We analyse an electroencephalography dataset with the proposed methods. |
doi_str_mv | 10.1093/biomet/asaa056 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2572250629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/biomet/asaa056</oup_id><sourcerecordid>2572250629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-3bb04f7c363f64e04c91f7bea6332cac964fbf1ffd9e97410e0353f1166fd30f3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKtb1wOuXEx7M8lkyFKKL6i40XXIpDc1pdOMNxkf_96W6d7V5cB3zoWPsWsOMw5azNsQO8xzm6yFWp2wCZdKlqLmcMomAKBKIaU8ZxcpbQ5R1WrC9IvNFH7KL0vBZiy2cR1SDq4gXBOmFOKu-A75o-jQpoGww10ukCjSJTvzdpvw6nin7P3h_m3xVC5fH58Xd8vSCeC5FG0L0jdOKOGVRJBOc9-0aJUQlbNOK-lbz71fadSN5IAgauE5V8qvBHgxZTfjbk_xc8CUzSYOtNu_NFXdVFUNqtJ7ajZSjmJKhN70FDpLv4aDOegxox5z1LMv3I6FOPT_sX94BWly</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572250629</pqid></control><display><type>article</type><title>Matrix-variate logistic regression with measurement error</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Fang, Junhan ; Yi, Grace Y</creator><creatorcontrib>Fang, Junhan ; Yi, Grace Y</creatorcontrib><description>Summary
Measurement error in covariates has been extensively studied in many conventional regression settings where covariate information is typically expressed in a vector form. However, there has been little work on error-prone matrix-variate data, which commonly arise from studies with imaging, spatial-temporal structures, etc. We consider analysis of error-contaminated matrix-variate data. We particularly focus on matrix-variate logistic measurement error models. We examine the biases induced from naive analysis which ignores measurement error in matrix-variate data. Two measurement error correction methods are developed to adjust for measurement error effects. The proposed methods are justified both theoretically and empirically. We analyse an electroencephalography dataset with the proposed methods.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asaa056</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>EEG ; Electroencephalography ; Error analysis ; Error correction ; Mathematical analysis</subject><ispartof>Biometrika, 2021-03, Vol.108 (1), p.83-97</ispartof><rights>2020 Biometrika Trust 2020</rights><rights>2020 Biometrika Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-3bb04f7c363f64e04c91f7bea6332cac964fbf1ffd9e97410e0353f1166fd30f3</citedby><cites>FETCH-LOGICAL-c301t-3bb04f7c363f64e04c91f7bea6332cac964fbf1ffd9e97410e0353f1166fd30f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1584,27924,27925</link.rule.ids></links><search><creatorcontrib>Fang, Junhan</creatorcontrib><creatorcontrib>Yi, Grace Y</creatorcontrib><title>Matrix-variate logistic regression with measurement error</title><title>Biometrika</title><description>Summary
Measurement error in covariates has been extensively studied in many conventional regression settings where covariate information is typically expressed in a vector form. However, there has been little work on error-prone matrix-variate data, which commonly arise from studies with imaging, spatial-temporal structures, etc. We consider analysis of error-contaminated matrix-variate data. We particularly focus on matrix-variate logistic measurement error models. We examine the biases induced from naive analysis which ignores measurement error in matrix-variate data. Two measurement error correction methods are developed to adjust for measurement error effects. The proposed methods are justified both theoretically and empirically. We analyse an electroencephalography dataset with the proposed methods.</description><subject>EEG</subject><subject>Electroencephalography</subject><subject>Error analysis</subject><subject>Error correction</subject><subject>Mathematical analysis</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKtb1wOuXEx7M8lkyFKKL6i40XXIpDc1pdOMNxkf_96W6d7V5cB3zoWPsWsOMw5azNsQO8xzm6yFWp2wCZdKlqLmcMomAKBKIaU8ZxcpbQ5R1WrC9IvNFH7KL0vBZiy2cR1SDq4gXBOmFOKu-A75o-jQpoGww10ukCjSJTvzdpvw6nin7P3h_m3xVC5fH58Xd8vSCeC5FG0L0jdOKOGVRJBOc9-0aJUQlbNOK-lbz71fadSN5IAgauE5V8qvBHgxZTfjbk_xc8CUzSYOtNu_NFXdVFUNqtJ7ajZSjmJKhN70FDpLv4aDOegxox5z1LMv3I6FOPT_sX94BWly</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Fang, Junhan</creator><creator>Yi, Grace Y</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20210301</creationdate><title>Matrix-variate logistic regression with measurement error</title><author>Fang, Junhan ; Yi, Grace Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-3bb04f7c363f64e04c91f7bea6332cac964fbf1ffd9e97410e0353f1166fd30f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>EEG</topic><topic>Electroencephalography</topic><topic>Error analysis</topic><topic>Error correction</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Junhan</creatorcontrib><creatorcontrib>Yi, Grace Y</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Junhan</au><au>Yi, Grace Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matrix-variate logistic regression with measurement error</atitle><jtitle>Biometrika</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>108</volume><issue>1</issue><spage>83</spage><epage>97</epage><pages>83-97</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><abstract>Summary
Measurement error in covariates has been extensively studied in many conventional regression settings where covariate information is typically expressed in a vector form. However, there has been little work on error-prone matrix-variate data, which commonly arise from studies with imaging, spatial-temporal structures, etc. We consider analysis of error-contaminated matrix-variate data. We particularly focus on matrix-variate logistic measurement error models. We examine the biases induced from naive analysis which ignores measurement error in matrix-variate data. Two measurement error correction methods are developed to adjust for measurement error effects. The proposed methods are justified both theoretically and empirically. We analyse an electroencephalography dataset with the proposed methods.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/biomet/asaa056</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3444 |
ispartof | Biometrika, 2021-03, Vol.108 (1), p.83-97 |
issn | 0006-3444 1464-3510 |
language | eng |
recordid | cdi_proquest_journals_2572250629 |
source | Oxford University Press Journals All Titles (1996-Current) |
subjects | EEG Electroencephalography Error analysis Error correction Mathematical analysis |
title | Matrix-variate logistic regression with measurement error |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A59%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matrix-variate%20logistic%20regression%20with%20measurement%20error&rft.jtitle=Biometrika&rft.au=Fang,%20Junhan&rft.date=2021-03-01&rft.volume=108&rft.issue=1&rft.spage=83&rft.epage=97&rft.pages=83-97&rft.issn=0006-3444&rft.eissn=1464-3510&rft_id=info:doi/10.1093/biomet/asaa056&rft_dat=%3Cproquest_cross%3E2572250629%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572250629&rft_id=info:pmid/&rft_oup_id=10.1093/biomet/asaa056&rfr_iscdi=true |