Stratified random sampling from streaming and stored data

Stratified random sampling (SRS) is a widely used sampling technique for approximate query processing. We consider SRS on continuously arriving data streams and statically stored data sets. We present a tight lower bound showing that any streaming algorithm for SRS over the entire stream must have,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Distributed and parallel databases : an international journal 2021-09, Vol.39 (3), p.665-710
Hauptverfasser: Nguyen, Trong Duc, Shih, Ming-Hung, Srivastava, Divesh, Tirthapura, Srikanta, Xu, Bojian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 710
container_issue 3
container_start_page 665
container_title Distributed and parallel databases : an international journal
container_volume 39
creator Nguyen, Trong Duc
Shih, Ming-Hung
Srivastava, Divesh
Tirthapura, Srikanta
Xu, Bojian
description Stratified random sampling (SRS) is a widely used sampling technique for approximate query processing. We consider SRS on continuously arriving data streams and statically stored data sets. We present a tight lower bound showing that any streaming algorithm for SRS over the entire stream must have, in the worst case, a variance that is Ω ( r ) factor away from the optimal, where r is the number of strata. We present S-VOILA, a practical streaming algorithm for SRS over the entire stream that is locally variance-optimal . We prove that any sliding window-based streaming SRS needs a workspace of Ω ( r M log W ) in the worst case, to maintain a variance-optimal SRS of size M , where W is the number of elements in the sliding window. Due to the inherent high workspace needs for sliding window-based SRS, we present SW-VOILA, a multi-layer practical sampling algorithm that uses only O ( M ) workspace but can maintain an SRS of size close to M in practice over a sliding window. Experiments show that both S-VOILA and SW-VOILA result in a variance that is typically close to their optimal offline counterparts, which was given the entire input beforehand. We also present VOILA, a variance-optimal offline algorithm for stratified random sampling. VOILA is a strict generalization of the well-known Neyman allocation , which is optimal only under the assumption that each stratum is abundant. Experiments show that VOILA can have significantly smaller variance (1.4x to 50x) than Neyman allocation on real-world data.
doi_str_mv 10.1007/s10619-020-07315-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2572250538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572250538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7b7d6b4645655a2e2a0f6d71804b5750c2e381f800078d42a867e4186a157903</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMoWFf_AU8Fz9FJ0mTSoyx-wYIH9x7SNl26bD9Msiz-96ZW8OZpeMzvzTweIbcM7hkAPgQGipUUOFBAwSQ9nZGMSRQUJepzkkHJFdWo-SW5CmEPACUyzEj5Eb2NXdu5Jvd2aMY-D7afDt2wy1s_q-id7WeZtkmNPpGNjfaaXLT2ENzN71yR7fPTdv1KN-8vb-vHDa0FKyPFChtVFaqQSkrLHbfQqgaZhqKSKKHmTmjW6pQIdVNwqxW6gmllU_wSxIrcLWcnP34eXYhmPx79kD4aLpFzCVLoRPGFqv0YgnetmXzXW_9lGJi5IbM0ZFJD5qchc0omsZhCgoed83-n_3F9A6d5Z5s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572250538</pqid></control><display><type>article</type><title>Stratified random sampling from streaming and stored data</title><source>SpringerLink Journals - AutoHoldings</source><creator>Nguyen, Trong Duc ; Shih, Ming-Hung ; Srivastava, Divesh ; Tirthapura, Srikanta ; Xu, Bojian</creator><creatorcontrib>Nguyen, Trong Duc ; Shih, Ming-Hung ; Srivastava, Divesh ; Tirthapura, Srikanta ; Xu, Bojian</creatorcontrib><description>Stratified random sampling (SRS) is a widely used sampling technique for approximate query processing. We consider SRS on continuously arriving data streams and statically stored data sets. We present a tight lower bound showing that any streaming algorithm for SRS over the entire stream must have, in the worst case, a variance that is Ω ( r ) factor away from the optimal, where r is the number of strata. We present S-VOILA, a practical streaming algorithm for SRS over the entire stream that is locally variance-optimal . We prove that any sliding window-based streaming SRS needs a workspace of Ω ( r M log W ) in the worst case, to maintain a variance-optimal SRS of size M , where W is the number of elements in the sliding window. Due to the inherent high workspace needs for sliding window-based SRS, we present SW-VOILA, a multi-layer practical sampling algorithm that uses only O ( M ) workspace but can maintain an SRS of size close to M in practice over a sliding window. Experiments show that both S-VOILA and SW-VOILA result in a variance that is typically close to their optimal offline counterparts, which was given the entire input beforehand. We also present VOILA, a variance-optimal offline algorithm for stratified random sampling. VOILA is a strict generalization of the well-known Neyman allocation , which is optimal only under the assumption that each stratum is abundant. Experiments show that VOILA can have significantly smaller variance (1.4x to 50x) than Neyman allocation on real-world data.</description><identifier>ISSN: 0926-8782</identifier><identifier>EISSN: 1573-7578</identifier><identifier>DOI: 10.1007/s10619-020-07315-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computer Science ; Data Structures ; Data transmission ; Database Management ; Information Systems Applications (incl.Internet) ; Lower bounds ; Memory Structures ; Multilayers ; Operating Systems ; Query processing ; Random sampling ; Sampling methods ; Sliding ; Variance</subject><ispartof>Distributed and parallel databases : an international journal, 2021-09, Vol.39 (3), p.665-710</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7b7d6b4645655a2e2a0f6d71804b5750c2e381f800078d42a867e4186a157903</citedby><cites>FETCH-LOGICAL-c319t-7b7d6b4645655a2e2a0f6d71804b5750c2e381f800078d42a867e4186a157903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10619-020-07315-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10619-020-07315-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Nguyen, Trong Duc</creatorcontrib><creatorcontrib>Shih, Ming-Hung</creatorcontrib><creatorcontrib>Srivastava, Divesh</creatorcontrib><creatorcontrib>Tirthapura, Srikanta</creatorcontrib><creatorcontrib>Xu, Bojian</creatorcontrib><title>Stratified random sampling from streaming and stored data</title><title>Distributed and parallel databases : an international journal</title><addtitle>Distrib Parallel Databases</addtitle><description>Stratified random sampling (SRS) is a widely used sampling technique for approximate query processing. We consider SRS on continuously arriving data streams and statically stored data sets. We present a tight lower bound showing that any streaming algorithm for SRS over the entire stream must have, in the worst case, a variance that is Ω ( r ) factor away from the optimal, where r is the number of strata. We present S-VOILA, a practical streaming algorithm for SRS over the entire stream that is locally variance-optimal . We prove that any sliding window-based streaming SRS needs a workspace of Ω ( r M log W ) in the worst case, to maintain a variance-optimal SRS of size M , where W is the number of elements in the sliding window. Due to the inherent high workspace needs for sliding window-based SRS, we present SW-VOILA, a multi-layer practical sampling algorithm that uses only O ( M ) workspace but can maintain an SRS of size close to M in practice over a sliding window. Experiments show that both S-VOILA and SW-VOILA result in a variance that is typically close to their optimal offline counterparts, which was given the entire input beforehand. We also present VOILA, a variance-optimal offline algorithm for stratified random sampling. VOILA is a strict generalization of the well-known Neyman allocation , which is optimal only under the assumption that each stratum is abundant. Experiments show that VOILA can have significantly smaller variance (1.4x to 50x) than Neyman allocation on real-world data.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Data Structures</subject><subject>Data transmission</subject><subject>Database Management</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Lower bounds</subject><subject>Memory Structures</subject><subject>Multilayers</subject><subject>Operating Systems</subject><subject>Query processing</subject><subject>Random sampling</subject><subject>Sampling methods</subject><subject>Sliding</subject><subject>Variance</subject><issn>0926-8782</issn><issn>1573-7578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMoWFf_AU8Fz9FJ0mTSoyx-wYIH9x7SNl26bD9Msiz-96ZW8OZpeMzvzTweIbcM7hkAPgQGipUUOFBAwSQ9nZGMSRQUJepzkkHJFdWo-SW5CmEPACUyzEj5Eb2NXdu5Jvd2aMY-D7afDt2wy1s_q-id7WeZtkmNPpGNjfaaXLT2ENzN71yR7fPTdv1KN-8vb-vHDa0FKyPFChtVFaqQSkrLHbfQqgaZhqKSKKHmTmjW6pQIdVNwqxW6gmllU_wSxIrcLWcnP34eXYhmPx79kD4aLpFzCVLoRPGFqv0YgnetmXzXW_9lGJi5IbM0ZFJD5qchc0omsZhCgoed83-n_3F9A6d5Z5s</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Nguyen, Trong Duc</creator><creator>Shih, Ming-Hung</creator><creator>Srivastava, Divesh</creator><creator>Tirthapura, Srikanta</creator><creator>Xu, Bojian</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>Stratified random sampling from streaming and stored data</title><author>Nguyen, Trong Duc ; Shih, Ming-Hung ; Srivastava, Divesh ; Tirthapura, Srikanta ; Xu, Bojian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7b7d6b4645655a2e2a0f6d71804b5750c2e381f800078d42a867e4186a157903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Data Structures</topic><topic>Data transmission</topic><topic>Database Management</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Lower bounds</topic><topic>Memory Structures</topic><topic>Multilayers</topic><topic>Operating Systems</topic><topic>Query processing</topic><topic>Random sampling</topic><topic>Sampling methods</topic><topic>Sliding</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Trong Duc</creatorcontrib><creatorcontrib>Shih, Ming-Hung</creatorcontrib><creatorcontrib>Srivastava, Divesh</creatorcontrib><creatorcontrib>Tirthapura, Srikanta</creatorcontrib><creatorcontrib>Xu, Bojian</creatorcontrib><collection>CrossRef</collection><jtitle>Distributed and parallel databases : an international journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Trong Duc</au><au>Shih, Ming-Hung</au><au>Srivastava, Divesh</au><au>Tirthapura, Srikanta</au><au>Xu, Bojian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stratified random sampling from streaming and stored data</atitle><jtitle>Distributed and parallel databases : an international journal</jtitle><stitle>Distrib Parallel Databases</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>39</volume><issue>3</issue><spage>665</spage><epage>710</epage><pages>665-710</pages><issn>0926-8782</issn><eissn>1573-7578</eissn><abstract>Stratified random sampling (SRS) is a widely used sampling technique for approximate query processing. We consider SRS on continuously arriving data streams and statically stored data sets. We present a tight lower bound showing that any streaming algorithm for SRS over the entire stream must have, in the worst case, a variance that is Ω ( r ) factor away from the optimal, where r is the number of strata. We present S-VOILA, a practical streaming algorithm for SRS over the entire stream that is locally variance-optimal . We prove that any sliding window-based streaming SRS needs a workspace of Ω ( r M log W ) in the worst case, to maintain a variance-optimal SRS of size M , where W is the number of elements in the sliding window. Due to the inherent high workspace needs for sliding window-based SRS, we present SW-VOILA, a multi-layer practical sampling algorithm that uses only O ( M ) workspace but can maintain an SRS of size close to M in practice over a sliding window. Experiments show that both S-VOILA and SW-VOILA result in a variance that is typically close to their optimal offline counterparts, which was given the entire input beforehand. We also present VOILA, a variance-optimal offline algorithm for stratified random sampling. VOILA is a strict generalization of the well-known Neyman allocation , which is optimal only under the assumption that each stratum is abundant. Experiments show that VOILA can have significantly smaller variance (1.4x to 50x) than Neyman allocation on real-world data.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10619-020-07315-w</doi><tpages>46</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0926-8782
ispartof Distributed and parallel databases : an international journal, 2021-09, Vol.39 (3), p.665-710
issn 0926-8782
1573-7578
language eng
recordid cdi_proquest_journals_2572250538
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Computer Science
Data Structures
Data transmission
Database Management
Information Systems Applications (incl.Internet)
Lower bounds
Memory Structures
Multilayers
Operating Systems
Query processing
Random sampling
Sampling methods
Sliding
Variance
title Stratified random sampling from streaming and stored data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stratified%20random%20sampling%20from%20streaming%20and%20stored%20data&rft.jtitle=Distributed%20and%20parallel%20databases%20:%20an%20international%20journal&rft.au=Nguyen,%20Trong%20Duc&rft.date=2021-09-01&rft.volume=39&rft.issue=3&rft.spage=665&rft.epage=710&rft.pages=665-710&rft.issn=0926-8782&rft.eissn=1573-7578&rft_id=info:doi/10.1007/s10619-020-07315-w&rft_dat=%3Cproquest_cross%3E2572250538%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572250538&rft_id=info:pmid/&rfr_iscdi=true