Large-sample asymptotics of the pseudo-marginal method
Summary The pseudo-marginal algorithm is a variant of the Metropolis–Hastings algorithm which samples asymptotically from a probability distribution when it is only possible to estimate unbiasedly an unnormalized version of its density. Practically, one has to trade off the computational resources u...
Gespeichert in:
Veröffentlicht in: | Biometrika 2021-03, Vol.108 (1), p.37-51 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 51 |
---|---|
container_issue | 1 |
container_start_page | 37 |
container_title | Biometrika |
container_volume | 108 |
creator | Schmon, S M Deligiannidis, G Doucet, A Pitt, M K |
description | Summary
The pseudo-marginal algorithm is a variant of the Metropolis–Hastings algorithm which samples asymptotically from a probability distribution when it is only possible to estimate unbiasedly an unnormalized version of its density. Practically, one has to trade off the computational resources used to obtain this estimator against the asymptotic variances of the ergodic averages obtained by the pseudo-marginal algorithm. Recent works on optimizing this trade-off rely on some strong assumptions, which can cast doubts over their practical relevance. In particular, they all assume that the distribution of the difference between the log-density, and its estimate is independent of the parameter value at which it is evaluated. Under regularity conditions we show that as the number of data points tends to infinity, a space-rescaled version of the pseudo-marginal chain converges weakly to another pseudo-marginal chain for which this assumption indeed holds. A study of this limiting chain allows us to provide parameter dimension-dependent guidelines on how to optimally scale a normal random walk proposal, and the number of Monte Carlo samples for the pseudo-marginal method in the large-sample regime. These findings complement and validate currently available results. |
doi_str_mv | 10.1093/biomet/asaa044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2572250353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/biomet/asaa044</oup_id><sourcerecordid>2572250353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-fbc18582ffbcf782ff476fca9cdb7bd7e61e41da0aa013da7abbe63c2a4987da3</originalsourceid><addsrcrecordid>eNqFkDtPxDAQhC0EEuGgpY5EReE7O3bspEQnXlIkGqitjR9cTgkOdlLcv8dRrqeaXemb3dEgdE_JlpKa7drOD3baQQQgnF-gjHLBMSspuUQZIURgxjm_RjcxHpdVlCJDooHwbXGEYextDvE0jJOfOh1z7_LpYPMx2tl4PCSs-4E-Ty8O3tyiKwd9tHdn3aCvl-fP_RtuPl7f908N1ozTCbtW06qsCpcGJxflUjgNtTatbI20glpODZAUmTIDEtrWCqYL4HUlDbANeljvjsH_zjZO6ujnkHJEVZSyKErCSpao7Urp4GMM1qkxdCnxSVGilm7U2o06d5MMj6vBz-N_7B9Uq2kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572250353</pqid></control><display><type>article</type><title>Large-sample asymptotics of the pseudo-marginal method</title><source>Oxford Academic Journals (OUP)</source><creator>Schmon, S M ; Deligiannidis, G ; Doucet, A ; Pitt, M K</creator><creatorcontrib>Schmon, S M ; Deligiannidis, G ; Doucet, A ; Pitt, M K</creatorcontrib><description>Summary
The pseudo-marginal algorithm is a variant of the Metropolis–Hastings algorithm which samples asymptotically from a probability distribution when it is only possible to estimate unbiasedly an unnormalized version of its density. Practically, one has to trade off the computational resources used to obtain this estimator against the asymptotic variances of the ergodic averages obtained by the pseudo-marginal algorithm. Recent works on optimizing this trade-off rely on some strong assumptions, which can cast doubts over their practical relevance. In particular, they all assume that the distribution of the difference between the log-density, and its estimate is independent of the parameter value at which it is evaluated. Under regularity conditions we show that as the number of data points tends to infinity, a space-rescaled version of the pseudo-marginal chain converges weakly to another pseudo-marginal chain for which this assumption indeed holds. A study of this limiting chain allows us to provide parameter dimension-dependent guidelines on how to optimally scale a normal random walk proposal, and the number of Monte Carlo samples for the pseudo-marginal method in the large-sample regime. These findings complement and validate currently available results.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asaa044</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; Asymptotic properties ; Chains ; Computer applications ; Data points ; Density ; Optimization ; Parameter estimation ; Probability distribution ; Random walk</subject><ispartof>Biometrika, 2021-03, Vol.108 (1), p.37-51</ispartof><rights>2020 Biometrika Trust 2020</rights><rights>2020 Biometrika Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-fbc18582ffbcf782ff476fca9cdb7bd7e61e41da0aa013da7abbe63c2a4987da3</citedby><cites>FETCH-LOGICAL-c341t-fbc18582ffbcf782ff476fca9cdb7bd7e61e41da0aa013da7abbe63c2a4987da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids></links><search><creatorcontrib>Schmon, S M</creatorcontrib><creatorcontrib>Deligiannidis, G</creatorcontrib><creatorcontrib>Doucet, A</creatorcontrib><creatorcontrib>Pitt, M K</creatorcontrib><title>Large-sample asymptotics of the pseudo-marginal method</title><title>Biometrika</title><description>Summary
The pseudo-marginal algorithm is a variant of the Metropolis–Hastings algorithm which samples asymptotically from a probability distribution when it is only possible to estimate unbiasedly an unnormalized version of its density. Practically, one has to trade off the computational resources used to obtain this estimator against the asymptotic variances of the ergodic averages obtained by the pseudo-marginal algorithm. Recent works on optimizing this trade-off rely on some strong assumptions, which can cast doubts over their practical relevance. In particular, they all assume that the distribution of the difference between the log-density, and its estimate is independent of the parameter value at which it is evaluated. Under regularity conditions we show that as the number of data points tends to infinity, a space-rescaled version of the pseudo-marginal chain converges weakly to another pseudo-marginal chain for which this assumption indeed holds. A study of this limiting chain allows us to provide parameter dimension-dependent guidelines on how to optimally scale a normal random walk proposal, and the number of Monte Carlo samples for the pseudo-marginal method in the large-sample regime. These findings complement and validate currently available results.</description><subject>Algorithms</subject><subject>Asymptotic properties</subject><subject>Chains</subject><subject>Computer applications</subject><subject>Data points</subject><subject>Density</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Probability distribution</subject><subject>Random walk</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPxDAQhC0EEuGgpY5EReE7O3bspEQnXlIkGqitjR9cTgkOdlLcv8dRrqeaXemb3dEgdE_JlpKa7drOD3baQQQgnF-gjHLBMSspuUQZIURgxjm_RjcxHpdVlCJDooHwbXGEYextDvE0jJOfOh1z7_LpYPMx2tl4PCSs-4E-Ty8O3tyiKwd9tHdn3aCvl-fP_RtuPl7f908N1ozTCbtW06qsCpcGJxflUjgNtTatbI20glpODZAUmTIDEtrWCqYL4HUlDbANeljvjsH_zjZO6ujnkHJEVZSyKErCSpao7Urp4GMM1qkxdCnxSVGilm7U2o06d5MMj6vBz-N_7B9Uq2kg</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Schmon, S M</creator><creator>Deligiannidis, G</creator><creator>Doucet, A</creator><creator>Pitt, M K</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20210301</creationdate><title>Large-sample asymptotics of the pseudo-marginal method</title><author>Schmon, S M ; Deligiannidis, G ; Doucet, A ; Pitt, M K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-fbc18582ffbcf782ff476fca9cdb7bd7e61e41da0aa013da7abbe63c2a4987da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Asymptotic properties</topic><topic>Chains</topic><topic>Computer applications</topic><topic>Data points</topic><topic>Density</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Probability distribution</topic><topic>Random walk</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmon, S M</creatorcontrib><creatorcontrib>Deligiannidis, G</creatorcontrib><creatorcontrib>Doucet, A</creatorcontrib><creatorcontrib>Pitt, M K</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmon, S M</au><au>Deligiannidis, G</au><au>Doucet, A</au><au>Pitt, M K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-sample asymptotics of the pseudo-marginal method</atitle><jtitle>Biometrika</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>108</volume><issue>1</issue><spage>37</spage><epage>51</epage><pages>37-51</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><abstract>Summary
The pseudo-marginal algorithm is a variant of the Metropolis–Hastings algorithm which samples asymptotically from a probability distribution when it is only possible to estimate unbiasedly an unnormalized version of its density. Practically, one has to trade off the computational resources used to obtain this estimator against the asymptotic variances of the ergodic averages obtained by the pseudo-marginal algorithm. Recent works on optimizing this trade-off rely on some strong assumptions, which can cast doubts over their practical relevance. In particular, they all assume that the distribution of the difference between the log-density, and its estimate is independent of the parameter value at which it is evaluated. Under regularity conditions we show that as the number of data points tends to infinity, a space-rescaled version of the pseudo-marginal chain converges weakly to another pseudo-marginal chain for which this assumption indeed holds. A study of this limiting chain allows us to provide parameter dimension-dependent guidelines on how to optimally scale a normal random walk proposal, and the number of Monte Carlo samples for the pseudo-marginal method in the large-sample regime. These findings complement and validate currently available results.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/biomet/asaa044</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3444 |
ispartof | Biometrika, 2021-03, Vol.108 (1), p.37-51 |
issn | 0006-3444 1464-3510 |
language | eng |
recordid | cdi_proquest_journals_2572250353 |
source | Oxford Academic Journals (OUP) |
subjects | Algorithms Asymptotic properties Chains Computer applications Data points Density Optimization Parameter estimation Probability distribution Random walk |
title | Large-sample asymptotics of the pseudo-marginal method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A44%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-sample%20asymptotics%20of%20the%20pseudo-marginal%20method&rft.jtitle=Biometrika&rft.au=Schmon,%20S%20M&rft.date=2021-03-01&rft.volume=108&rft.issue=1&rft.spage=37&rft.epage=51&rft.pages=37-51&rft.issn=0006-3444&rft.eissn=1464-3510&rft_id=info:doi/10.1093/biomet/asaa044&rft_dat=%3Cproquest_cross%3E2572250353%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572250353&rft_id=info:pmid/&rft_oup_id=10.1093/biomet/asaa044&rfr_iscdi=true |