Sweepouts of closed Riemannian manifolds

We show that for every closed Riemannian manifold there exists a continuous family of 1-cycles (defined as finite collections of disjoint closed curves) parametrized by a sphere and sweeping out the whole manifold so that the lengths of all connected closed curves are bounded in terms of the volume...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometric And Functional Analysis 2021-06, Vol.31 (3), p.721-766
Hauptverfasser: Nabutovsky, Alexander, Rotman, Regina, Sabourau, Stéphane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 766
container_issue 3
container_start_page 721
container_title Geometric And Functional Analysis
container_volume 31
creator Nabutovsky, Alexander
Rotman, Regina
Sabourau, Stéphane
description We show that for every closed Riemannian manifold there exists a continuous family of 1-cycles (defined as finite collections of disjoint closed curves) parametrized by a sphere and sweeping out the whole manifold so that the lengths of all connected closed curves are bounded in terms of the volume (or the diameter) and the dimension  n of the manifold, when n ≥ 3 . An alternative form of this result involves a modification of Gromov’s definition of waist of sweepouts, where the space of parameters can be any finite polyhedron (and not necessarily a pseudomanifold). We demonstrate that the so-defined polyhedral 1-dimensional waist of a closed Riemannian manifold is equal to its filling radius up to at most a constant factor. We also establish upper bounds for the polyhedral 1-waist of some homology classes in terms of the volume or the diameter of the ambient manifold. In addition, we provide generalizations of these results for sweepouts by polyhedra of higher dimension using the homological filling functions. Finally, we demonstrate that the filling radius and the hypersphericity of a closed Riemannian manifold can be arbitrarily far apart.
doi_str_mv 10.1007/s00039-021-00575-3
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2572250193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572250193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-c88b26bf41a3d85039635eee0fafd2e574fbcaa76fd0d2232ce687418aa85d513</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWAG11Eb16TzLIUa4WC4APchXSS6JTppCat4r8344juXJ3L5TuHw0HolMAlAZBXCQBYhYESDCCkwGwPjQingFUlYT_fQErMOXs-REcprTIuBBcjdP7w4dwm7LapCL6o25CcLe4btzZd15iuyNr40Np0jA68aZM7-dExeppdP07neHF3czudLHDNKrnFtVJLWi49J4ZZJXKpkgnnHHjjLXVCcr-sjZGlt2ApZbR2pZKcKGOUsIKwMboYcl9NqzexWZv4qYNp9Hyy0P2vjySVKt979mxgNzG87Vza6lXYxS7X01RISgWQimWKDlQdQ0rR-d9YArpfTw_r6bye_l5P9yY2mFKGuxcX_6L_cX0BPAxwVg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572250193</pqid></control><display><type>article</type><title>Sweepouts of closed Riemannian manifolds</title><source>SpringerNature Complete Journals</source><creator>Nabutovsky, Alexander ; Rotman, Regina ; Sabourau, Stéphane</creator><creatorcontrib>Nabutovsky, Alexander ; Rotman, Regina ; Sabourau, Stéphane</creatorcontrib><description>We show that for every closed Riemannian manifold there exists a continuous family of 1-cycles (defined as finite collections of disjoint closed curves) parametrized by a sphere and sweeping out the whole manifold so that the lengths of all connected closed curves are bounded in terms of the volume (or the diameter) and the dimension  n of the manifold, when n ≥ 3 . An alternative form of this result involves a modification of Gromov’s definition of waist of sweepouts, where the space of parameters can be any finite polyhedron (and not necessarily a pseudomanifold). We demonstrate that the so-defined polyhedral 1-dimensional waist of a closed Riemannian manifold is equal to its filling radius up to at most a constant factor. We also establish upper bounds for the polyhedral 1-waist of some homology classes in terms of the volume or the diameter of the ambient manifold. In addition, we provide generalizations of these results for sweepouts by polyhedra of higher dimension using the homological filling functions. Finally, we demonstrate that the filling radius and the hypersphericity of a closed Riemannian manifold can be arbitrarily far apart.</description><identifier>ISSN: 1016-443X</identifier><identifier>EISSN: 1420-8970</identifier><identifier>DOI: 10.1007/s00039-021-00575-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Diameters ; Differential Geometry ; Homology ; Manifolds (mathematics) ; Mathematics ; Mathematics and Statistics ; Polyhedra ; Riemann manifold ; Upper bounds</subject><ispartof>Geometric And Functional Analysis, 2021-06, Vol.31 (3), p.721-766</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-c88b26bf41a3d85039635eee0fafd2e574fbcaa76fd0d2232ce687418aa85d513</citedby><cites>FETCH-LOGICAL-c397t-c88b26bf41a3d85039635eee0fafd2e574fbcaa76fd0d2232ce687418aa85d513</cites><orcidid>0009-0007-5426-7156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00039-021-00575-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00039-021-00575-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03961986$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nabutovsky, Alexander</creatorcontrib><creatorcontrib>Rotman, Regina</creatorcontrib><creatorcontrib>Sabourau, Stéphane</creatorcontrib><title>Sweepouts of closed Riemannian manifolds</title><title>Geometric And Functional Analysis</title><addtitle>Geom. Funct. Anal</addtitle><description>We show that for every closed Riemannian manifold there exists a continuous family of 1-cycles (defined as finite collections of disjoint closed curves) parametrized by a sphere and sweeping out the whole manifold so that the lengths of all connected closed curves are bounded in terms of the volume (or the diameter) and the dimension  n of the manifold, when n ≥ 3 . An alternative form of this result involves a modification of Gromov’s definition of waist of sweepouts, where the space of parameters can be any finite polyhedron (and not necessarily a pseudomanifold). We demonstrate that the so-defined polyhedral 1-dimensional waist of a closed Riemannian manifold is equal to its filling radius up to at most a constant factor. We also establish upper bounds for the polyhedral 1-waist of some homology classes in terms of the volume or the diameter of the ambient manifold. In addition, we provide generalizations of these results for sweepouts by polyhedra of higher dimension using the homological filling functions. Finally, we demonstrate that the filling radius and the hypersphericity of a closed Riemannian manifold can be arbitrarily far apart.</description><subject>Analysis</subject><subject>Diameters</subject><subject>Differential Geometry</subject><subject>Homology</subject><subject>Manifolds (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polyhedra</subject><subject>Riemann manifold</subject><subject>Upper bounds</subject><issn>1016-443X</issn><issn>1420-8970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wNWAG11Eb16TzLIUa4WC4APchXSS6JTppCat4r8344juXJ3L5TuHw0HolMAlAZBXCQBYhYESDCCkwGwPjQingFUlYT_fQErMOXs-REcprTIuBBcjdP7w4dwm7LapCL6o25CcLe4btzZd15iuyNr40Np0jA68aZM7-dExeppdP07neHF3czudLHDNKrnFtVJLWi49J4ZZJXKpkgnnHHjjLXVCcr-sjZGlt2ApZbR2pZKcKGOUsIKwMboYcl9NqzexWZv4qYNp9Hyy0P2vjySVKt979mxgNzG87Vza6lXYxS7X01RISgWQimWKDlQdQ0rR-d9YArpfTw_r6bye_l5P9yY2mFKGuxcX_6L_cX0BPAxwVg</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Nabutovsky, Alexander</creator><creator>Rotman, Regina</creator><creator>Sabourau, Stéphane</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0009-0007-5426-7156</orcidid></search><sort><creationdate>20210601</creationdate><title>Sweepouts of closed Riemannian manifolds</title><author>Nabutovsky, Alexander ; Rotman, Regina ; Sabourau, Stéphane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-c88b26bf41a3d85039635eee0fafd2e574fbcaa76fd0d2232ce687418aa85d513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Diameters</topic><topic>Differential Geometry</topic><topic>Homology</topic><topic>Manifolds (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polyhedra</topic><topic>Riemann manifold</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nabutovsky, Alexander</creatorcontrib><creatorcontrib>Rotman, Regina</creatorcontrib><creatorcontrib>Sabourau, Stéphane</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geometric And Functional Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nabutovsky, Alexander</au><au>Rotman, Regina</au><au>Sabourau, Stéphane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sweepouts of closed Riemannian manifolds</atitle><jtitle>Geometric And Functional Analysis</jtitle><stitle>Geom. Funct. Anal</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>31</volume><issue>3</issue><spage>721</spage><epage>766</epage><pages>721-766</pages><issn>1016-443X</issn><eissn>1420-8970</eissn><abstract>We show that for every closed Riemannian manifold there exists a continuous family of 1-cycles (defined as finite collections of disjoint closed curves) parametrized by a sphere and sweeping out the whole manifold so that the lengths of all connected closed curves are bounded in terms of the volume (or the diameter) and the dimension  n of the manifold, when n ≥ 3 . An alternative form of this result involves a modification of Gromov’s definition of waist of sweepouts, where the space of parameters can be any finite polyhedron (and not necessarily a pseudomanifold). We demonstrate that the so-defined polyhedral 1-dimensional waist of a closed Riemannian manifold is equal to its filling radius up to at most a constant factor. We also establish upper bounds for the polyhedral 1-waist of some homology classes in terms of the volume or the diameter of the ambient manifold. In addition, we provide generalizations of these results for sweepouts by polyhedra of higher dimension using the homological filling functions. Finally, we demonstrate that the filling radius and the hypersphericity of a closed Riemannian manifold can be arbitrarily far apart.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00039-021-00575-3</doi><tpages>46</tpages><orcidid>https://orcid.org/0009-0007-5426-7156</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1016-443X
ispartof Geometric And Functional Analysis, 2021-06, Vol.31 (3), p.721-766
issn 1016-443X
1420-8970
language eng
recordid cdi_proquest_journals_2572250193
source SpringerNature Complete Journals
subjects Analysis
Diameters
Differential Geometry
Homology
Manifolds (mathematics)
Mathematics
Mathematics and Statistics
Polyhedra
Riemann manifold
Upper bounds
title Sweepouts of closed Riemannian manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A17%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sweepouts%20of%20closed%20Riemannian%20manifolds&rft.jtitle=Geometric%20And%20Functional%20Analysis&rft.au=Nabutovsky,%20Alexander&rft.date=2021-06-01&rft.volume=31&rft.issue=3&rft.spage=721&rft.epage=766&rft.pages=721-766&rft.issn=1016-443X&rft.eissn=1420-8970&rft_id=info:doi/10.1007/s00039-021-00575-3&rft_dat=%3Cproquest_hal_p%3E2572250193%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572250193&rft_id=info:pmid/&rfr_iscdi=true