P, C and T: Different Properties on the Kinematical Level
We study the discrete symmetries (P,C and T) on the kinematical level within the extended Poincaré Group. On the basis of the Silagadze research, we investigate the question of the definitions of the discrete symmetry operators both on the classical level, and in the secondary-quantization scheme. W...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2018-04, Vol.1010 (1), p.12011 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12011 |
container_title | Journal of physics. Conference series |
container_volume | 1010 |
creator | Dvoeglazov, Valeriy V |
description | We study the discrete symmetries (P,C and T) on the kinematical level within the extended Poincaré Group. On the basis of the Silagadze research, we investigate the question of the definitions of the discrete symmetry operators both on the classical level, and in the secondary-quantization scheme. We study the physical contents within several bases: light-front formulation, helicity basis, angular momentum basis, and so on, on several practical examples. We analize problems in construction of the neutral particles in the the (1/2, 0) + (0, 1/2) representation, the (1, 0) + (0, 1) and the (1/2, 1/2) representations of the Lorentz Group. As well known, the photon has the quantum numbers 1−, so the (1, 0) + (0, 1) representation of the Lorentz group is relevant to its description. We have ambiguities in the definitions of the corresponding operators P, C; T, which lead to different physical consequences. It appears that the answers are connected with the helicity basis properties, and commutations/anticommutations of the corresponding operators, P, C, T, and C 2, P 2, (CP)2 properties. This contribution is the review paper of my previous work [2, 3]. |
doi_str_mv | 10.1088/1742-6596/1010/1/012011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2572232624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572232624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-20b84b02593e5221217021cb78276f6b20c857bbeec187e402ec8cfc6a087d333</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFZ_gwtejZmZfOzGm8RPLNhDPS_JdoIpbRJ3U8F_b0KkHp3LDMz7vjM8Qlwi3CBoHaKKKUiTLA0REEIMAQkQj8TssDk-zFqfijPvNwDRUGomsuW1zGXRrOXqVt7XVcWOm14uXdux62v2sm1k_8HytW54V_S1LbZywV-8PRcnVbH1fPHb5-L98WGVPweLt6eX_G4R2EjpPiAodVwCJVnECRESKiC0pdKk0iotCaxOVFkyW9SKYyC22lY2LUCr9fDkXFxNuZ1rP_fse7Np964ZThpKFFFEKcWDSk0q61rvHVemc_WucN8GwYyczEjAjDTMyMmgmTgNzmhy1m33F_2f6wfYumaW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572232624</pqid></control><display><type>article</type><title>P, C and T: Different Properties on the Kinematical Level</title><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Dvoeglazov, Valeriy V</creator><creatorcontrib>Dvoeglazov, Valeriy V</creatorcontrib><description>We study the discrete symmetries (P,C and T) on the kinematical level within the extended Poincaré Group. On the basis of the Silagadze research, we investigate the question of the definitions of the discrete symmetry operators both on the classical level, and in the secondary-quantization scheme. We study the physical contents within several bases: light-front formulation, helicity basis, angular momentum basis, and so on, on several practical examples. We analize problems in construction of the neutral particles in the the (1/2, 0) + (0, 1/2) representation, the (1, 0) + (0, 1) and the (1/2, 1/2) representations of the Lorentz Group. As well known, the photon has the quantum numbers 1−, so the (1, 0) + (0, 1) representation of the Lorentz group is relevant to its description. We have ambiguities in the definitions of the corresponding operators P, C; T, which lead to different physical consequences. It appears that the answers are connected with the helicity basis properties, and commutations/anticommutations of the corresponding operators, P, C, T, and C 2, P 2, (CP)2 properties. This contribution is the review paper of my previous work [2, 3].</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1010/1/012011</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Angular momentum ; Helicity ; Neutral particles ; Operators ; Physics ; Quantum numbers ; Representations</subject><ispartof>Journal of physics. Conference series, 2018-04, Vol.1010 (1), p.12011</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-20b84b02593e5221217021cb78276f6b20c857bbeec187e402ec8cfc6a087d333</citedby><cites>FETCH-LOGICAL-c378t-20b84b02593e5221217021cb78276f6b20c857bbeec187e402ec8cfc6a087d333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1010/1/012011/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Dvoeglazov, Valeriy V</creatorcontrib><title>P, C and T: Different Properties on the Kinematical Level</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>We study the discrete symmetries (P,C and T) on the kinematical level within the extended Poincaré Group. On the basis of the Silagadze research, we investigate the question of the definitions of the discrete symmetry operators both on the classical level, and in the secondary-quantization scheme. We study the physical contents within several bases: light-front formulation, helicity basis, angular momentum basis, and so on, on several practical examples. We analize problems in construction of the neutral particles in the the (1/2, 0) + (0, 1/2) representation, the (1, 0) + (0, 1) and the (1/2, 1/2) representations of the Lorentz Group. As well known, the photon has the quantum numbers 1−, so the (1, 0) + (0, 1) representation of the Lorentz group is relevant to its description. We have ambiguities in the definitions of the corresponding operators P, C; T, which lead to different physical consequences. It appears that the answers are connected with the helicity basis properties, and commutations/anticommutations of the corresponding operators, P, C, T, and C 2, P 2, (CP)2 properties. This contribution is the review paper of my previous work [2, 3].</description><subject>Angular momentum</subject><subject>Helicity</subject><subject>Neutral particles</subject><subject>Operators</subject><subject>Physics</subject><subject>Quantum numbers</subject><subject>Representations</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkE1Lw0AQhhdRsFZ_gwtejZmZfOzGm8RPLNhDPS_JdoIpbRJ3U8F_b0KkHp3LDMz7vjM8Qlwi3CBoHaKKKUiTLA0REEIMAQkQj8TssDk-zFqfijPvNwDRUGomsuW1zGXRrOXqVt7XVcWOm14uXdux62v2sm1k_8HytW54V_S1LbZywV-8PRcnVbH1fPHb5-L98WGVPweLt6eX_G4R2EjpPiAodVwCJVnECRESKiC0pdKk0iotCaxOVFkyW9SKYyC22lY2LUCr9fDkXFxNuZ1rP_fse7Np964ZThpKFFFEKcWDSk0q61rvHVemc_WucN8GwYyczEjAjDTMyMmgmTgNzmhy1m33F_2f6wfYumaW</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Dvoeglazov, Valeriy V</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20180401</creationdate><title>P, C and T: Different Properties on the Kinematical Level</title><author>Dvoeglazov, Valeriy V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-20b84b02593e5221217021cb78276f6b20c857bbeec187e402ec8cfc6a087d333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Angular momentum</topic><topic>Helicity</topic><topic>Neutral particles</topic><topic>Operators</topic><topic>Physics</topic><topic>Quantum numbers</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dvoeglazov, Valeriy V</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dvoeglazov, Valeriy V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>P, C and T: Different Properties on the Kinematical Level</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>1010</volume><issue>1</issue><spage>12011</spage><pages>12011-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>We study the discrete symmetries (P,C and T) on the kinematical level within the extended Poincaré Group. On the basis of the Silagadze research, we investigate the question of the definitions of the discrete symmetry operators both on the classical level, and in the secondary-quantization scheme. We study the physical contents within several bases: light-front formulation, helicity basis, angular momentum basis, and so on, on several practical examples. We analize problems in construction of the neutral particles in the the (1/2, 0) + (0, 1/2) representation, the (1, 0) + (0, 1) and the (1/2, 1/2) representations of the Lorentz Group. As well known, the photon has the quantum numbers 1−, so the (1, 0) + (0, 1) representation of the Lorentz group is relevant to its description. We have ambiguities in the definitions of the corresponding operators P, C; T, which lead to different physical consequences. It appears that the answers are connected with the helicity basis properties, and commutations/anticommutations of the corresponding operators, P, C, T, and C 2, P 2, (CP)2 properties. This contribution is the review paper of my previous work [2, 3].</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1010/1/012011</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2018-04, Vol.1010 (1), p.12011 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2572232624 |
source | Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Angular momentum Helicity Neutral particles Operators Physics Quantum numbers Representations |
title | P, C and T: Different Properties on the Kinematical Level |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A05%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=P,%20C%20and%20T:%20Different%20Properties%20on%20the%20Kinematical%20Level&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Dvoeglazov,%20Valeriy%20V&rft.date=2018-04-01&rft.volume=1010&rft.issue=1&rft.spage=12011&rft.pages=12011-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1010/1/012011&rft_dat=%3Cproquest_iop_j%3E2572232624%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572232624&rft_id=info:pmid/&rfr_iscdi=true |