Ingenious Snake: An Adaptive Multi-Class Contours Extraction
Active contour model (ACM) plays an important role in computer vision and medical image application. The traditional ACMs were used to extract single-class of object contours. While, simultaneous extraction of multi-class of interesting contours (i.e., various contours with closed- or open-ended) ha...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2018-04, Vol.1004 (1), p.12021 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12021 |
container_title | Journal of physics. Conference series |
container_volume | 1004 |
creator | Li, Baolin Zhou, Shoujun |
description | Active contour model (ACM) plays an important role in computer vision and medical image application. The traditional ACMs were used to extract single-class of object contours. While, simultaneous extraction of multi-class of interesting contours (i.e., various contours with closed- or open-ended) have not been solved so far. Therefore, a novel ACM model named "Ingenious Snake" is proposed to adaptively extract these interesting contours. In the first place, the ridge-points are extracted based on the local phase measurement of gradient vector flow field; the consequential ridgelines initialization are automated with high speed. Secondly, the contours' deformation and evolvement are implemented with the ingenious snake. In the experiments, the result from initialization, deformation and evolvement are compared with the existing methods. The quantitative evaluation of the structure extraction is satisfying with respect of effectiveness and accuracy. |
doi_str_mv | 10.1088/1742-6596/1004/1/012021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2572197243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572197243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-58c3bf1f6f1bcef159430da182f60683500baf90c1a598f88605301aaf17e2853</originalsourceid><addsrcrecordid>eNqFkN9LwzAQgIMoOKd_gwXfhNq7pGlT8WWUTScThelzyLpEOmdSm1b0v7elMhEE7-UO7rsffIScIlwgCBFhGtMw4VkSIUAcYQRIgeIeGe06-7taiENy5P0GgHWRjsjV3D5rW7rWB0urXvRlMLHBZK2qpnzXwV27bcow3yrvg9zZxrW1D6YfTa2KpnT2mBwYtfX65DuPydNs-pjfhIv763k-WYQF41kTclGwlUGTGFwV2iDPYgZrhYKaBBLBOMBKmQwKVDwTRogEOANUymCqqeBsTM6GvVXt3lrtG7npPrHdSUl5SjFLacw6Kh2oonbe19rIqi5fVf0pEWSvSvYSZC9E9qokykFVN3k-TJau-ll9-5Avf4OyWpsOZn_A_534Ag2jdqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572197243</pqid></control><display><type>article</type><title>Ingenious Snake: An Adaptive Multi-Class Contours Extraction</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Baolin ; Zhou, Shoujun</creator><creatorcontrib>Li, Baolin ; Zhou, Shoujun</creatorcontrib><description>Active contour model (ACM) plays an important role in computer vision and medical image application. The traditional ACMs were used to extract single-class of object contours. While, simultaneous extraction of multi-class of interesting contours (i.e., various contours with closed- or open-ended) have not been solved so far. Therefore, a novel ACM model named "Ingenious Snake" is proposed to adaptively extract these interesting contours. In the first place, the ridge-points are extracted based on the local phase measurement of gradient vector flow field; the consequential ridgelines initialization are automated with high speed. Secondly, the contours' deformation and evolvement are implemented with the ingenious snake. In the experiments, the result from initialization, deformation and evolvement are compared with the existing methods. The quantitative evaluation of the structure extraction is satisfying with respect of effectiveness and accuracy.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1004/1/012021</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Computer vision ; Contours ; Deformation ; Medical imaging ; Phase measurement ; Physics</subject><ispartof>Journal of physics. Conference series, 2018-04, Vol.1004 (1), p.12021</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-58c3bf1f6f1bcef159430da182f60683500baf90c1a598f88605301aaf17e2853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1004/1/012021/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Li, Baolin</creatorcontrib><creatorcontrib>Zhou, Shoujun</creatorcontrib><title>Ingenious Snake: An Adaptive Multi-Class Contours Extraction</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Active contour model (ACM) plays an important role in computer vision and medical image application. The traditional ACMs were used to extract single-class of object contours. While, simultaneous extraction of multi-class of interesting contours (i.e., various contours with closed- or open-ended) have not been solved so far. Therefore, a novel ACM model named "Ingenious Snake" is proposed to adaptively extract these interesting contours. In the first place, the ridge-points are extracted based on the local phase measurement of gradient vector flow field; the consequential ridgelines initialization are automated with high speed. Secondly, the contours' deformation and evolvement are implemented with the ingenious snake. In the experiments, the result from initialization, deformation and evolvement are compared with the existing methods. The quantitative evaluation of the structure extraction is satisfying with respect of effectiveness and accuracy.</description><subject>Computer vision</subject><subject>Contours</subject><subject>Deformation</subject><subject>Medical imaging</subject><subject>Phase measurement</subject><subject>Physics</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkN9LwzAQgIMoOKd_gwXfhNq7pGlT8WWUTScThelzyLpEOmdSm1b0v7elMhEE7-UO7rsffIScIlwgCBFhGtMw4VkSIUAcYQRIgeIeGe06-7taiENy5P0GgHWRjsjV3D5rW7rWB0urXvRlMLHBZK2qpnzXwV27bcow3yrvg9zZxrW1D6YfTa2KpnT2mBwYtfX65DuPydNs-pjfhIv763k-WYQF41kTclGwlUGTGFwV2iDPYgZrhYKaBBLBOMBKmQwKVDwTRogEOANUymCqqeBsTM6GvVXt3lrtG7npPrHdSUl5SjFLacw6Kh2oonbe19rIqi5fVf0pEWSvSvYSZC9E9qokykFVN3k-TJau-ll9-5Avf4OyWpsOZn_A_534Ag2jdqQ</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Li, Baolin</creator><creator>Zhou, Shoujun</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20180401</creationdate><title>Ingenious Snake: An Adaptive Multi-Class Contours Extraction</title><author>Li, Baolin ; Zhou, Shoujun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-58c3bf1f6f1bcef159430da182f60683500baf90c1a598f88605301aaf17e2853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer vision</topic><topic>Contours</topic><topic>Deformation</topic><topic>Medical imaging</topic><topic>Phase measurement</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Baolin</creatorcontrib><creatorcontrib>Zhou, Shoujun</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Baolin</au><au>Zhou, Shoujun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ingenious Snake: An Adaptive Multi-Class Contours Extraction</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>1004</volume><issue>1</issue><spage>12021</spage><pages>12021-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Active contour model (ACM) plays an important role in computer vision and medical image application. The traditional ACMs were used to extract single-class of object contours. While, simultaneous extraction of multi-class of interesting contours (i.e., various contours with closed- or open-ended) have not been solved so far. Therefore, a novel ACM model named "Ingenious Snake" is proposed to adaptively extract these interesting contours. In the first place, the ridge-points are extracted based on the local phase measurement of gradient vector flow field; the consequential ridgelines initialization are automated with high speed. Secondly, the contours' deformation and evolvement are implemented with the ingenious snake. In the experiments, the result from initialization, deformation and evolvement are compared with the existing methods. The quantitative evaluation of the structure extraction is satisfying with respect of effectiveness and accuracy.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1004/1/012021</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2018-04, Vol.1004 (1), p.12021 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2572197243 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Computer vision Contours Deformation Medical imaging Phase measurement Physics |
title | Ingenious Snake: An Adaptive Multi-Class Contours Extraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A09%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ingenious%20Snake:%20An%20Adaptive%20Multi-Class%20Contours%20Extraction&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Li,%20Baolin&rft.date=2018-04-01&rft.volume=1004&rft.issue=1&rft.spage=12021&rft.pages=12021-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1004/1/012021&rft_dat=%3Cproquest_iop_j%3E2572197243%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572197243&rft_id=info:pmid/&rfr_iscdi=true |