Effect of particle size of TiO2 and additive materials to improve dye sensitized solar cells efficiency
It became a great interest Dye-sensitized solar cells (DSSC) as a successful alternative to silicon solar cells in terms of cost and simplicity. These cells rely on a semi-conductive material of electricity TiO2 nanocrystalline which encapsulates glass electrodes from the connected side at a tempera...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2018-05, Vol.1003 (1), p.12077 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12077 |
container_title | Journal of physics. Conference series |
container_volume | 1003 |
creator | Ali, Falah H Alwan, Dheyaa B |
description | It became a great interest Dye-sensitized solar cells (DSSC) as a successful alternative to silicon solar cells in terms of cost and simplicity. These cells rely on a semi-conductive material of electricity TiO2 nanocrystalline which encapsulates glass electrodes from the connected side at a temperature 450°C. In this work, the effect of nanoparticle size shows the size of atoms. The smaller the size of the atoms, the greater the surface area and thus the sufficient absorption of the dye and the stimulation of electrons, where increasing surface area increases efficiency. Then a limited amount was added and at a certain concentration, which led to a reasonable improvement in efficiency. According to this procedure commercially available TiO2 (10 nm,25 nm,33 nm, 50 nm) standard. A TiO2 paste was prepared by mixing commercial TiO2, ethanol, distilled water, F:SnO2 (FTO film thickness 14 μm) conductive glasses. By using Dr. Blade method we got films with appropriate thicknesses, then by using several particle sizes (10 nm, 25 nm, 33 nm, 50 nm),many efficiencies were founded (2.39 %, 2.1 %,1.85 %,1.65%) respectively. Improved solar cell efficiency after addition of several chemical materials and the best that got is Cu (NO3)2. Efficiency became for (10 nm) (2.61 %, 2.34 %,2.1%,1.85%) respectively under 40 mW/cm2. |
doi_str_mv | 10.1088/1742-6596/1003/1/012077 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2572188626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572188626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-6a40a0a70667f1460d9fbd21935e5d59d748e7708e143ee6ef4f2ee8cbac28173</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhosoOKe_wYB3Qm2Stkl6KWN-MZjgvA5ZciIZXVuTTth-vSkVRRDMTcLJ855zeJLkkuAbgoXICC9oysqKZQTjPCMZJhRzfpRMvn-Ov99CnCZnIWwiGQ-fJG9za0H3qLWoU753ugYU3AGGwsotKVKNQcoY17sPQFvVg3eqDqhvkdt2vo1Fs48RaEJEDmBQaGvlkYY6UmCt0w4avT9PTmzMwcXXPU1e7-ar2UO6WN4_zm4XqS5K2qdMFVhhxTFj3JKCYVPZtaGkyksoTVkZXgjgHAsgRQ7AwBaWAgi9VpoKwvNpcjX2jbu97yD0ctPufBNHSlpySoRglEWKj5T2bQgerOy82yq_lwTLwaocfMnBnRysSiJHqzF5PSZd2_20fnqevfwGZWdshPM_4P9GfAJ53odc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572188626</pqid></control><display><type>article</type><title>Effect of particle size of TiO2 and additive materials to improve dye sensitized solar cells efficiency</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ali, Falah H ; Alwan, Dheyaa B</creator><creatorcontrib>Ali, Falah H ; Alwan, Dheyaa B</creatorcontrib><description>It became a great interest Dye-sensitized solar cells (DSSC) as a successful alternative to silicon solar cells in terms of cost and simplicity. These cells rely on a semi-conductive material of electricity TiO2 nanocrystalline which encapsulates glass electrodes from the connected side at a temperature 450°C. In this work, the effect of nanoparticle size shows the size of atoms. The smaller the size of the atoms, the greater the surface area and thus the sufficient absorption of the dye and the stimulation of electrons, where increasing surface area increases efficiency. Then a limited amount was added and at a certain concentration, which led to a reasonable improvement in efficiency. According to this procedure commercially available TiO2 (10 nm,25 nm,33 nm, 50 nm) standard. A TiO2 paste was prepared by mixing commercial TiO2, ethanol, distilled water, F:SnO2 (FTO film thickness 14 μm) conductive glasses. By using Dr. Blade method we got films with appropriate thicknesses, then by using several particle sizes (10 nm, 25 nm, 33 nm, 50 nm),many efficiencies were founded (2.39 %, 2.1 %,1.85 %,1.65%) respectively. Improved solar cell efficiency after addition of several chemical materials and the best that got is Cu (NO3)2. Efficiency became for (10 nm) (2.61 %, 2.34 %,2.1%,1.85%) respectively under 40 mW/cm2.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1003/1/012077</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>additive ; Direct reduction ; Distilled water ; DSSC ; Dye-sensitized solar cells ; Dyes ; Efficiency ; Ethanol ; Film thickness ; Glass electrodes ; Nanoparticles ; particle size ; Photovoltaic cells ; Physics ; Surface area ; Tin dioxide ; TiO ; Titanium dioxide</subject><ispartof>Journal of physics. Conference series, 2018-05, Vol.1003 (1), p.12077</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-6a40a0a70667f1460d9fbd21935e5d59d748e7708e143ee6ef4f2ee8cbac28173</citedby><cites>FETCH-LOGICAL-c452t-6a40a0a70667f1460d9fbd21935e5d59d748e7708e143ee6ef4f2ee8cbac28173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1003/1/012077/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,777,781,27905,27906,38849,38871,53821,53848</link.rule.ids></links><search><creatorcontrib>Ali, Falah H</creatorcontrib><creatorcontrib>Alwan, Dheyaa B</creatorcontrib><title>Effect of particle size of TiO2 and additive materials to improve dye sensitized solar cells efficiency</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>It became a great interest Dye-sensitized solar cells (DSSC) as a successful alternative to silicon solar cells in terms of cost and simplicity. These cells rely on a semi-conductive material of electricity TiO2 nanocrystalline which encapsulates glass electrodes from the connected side at a temperature 450°C. In this work, the effect of nanoparticle size shows the size of atoms. The smaller the size of the atoms, the greater the surface area and thus the sufficient absorption of the dye and the stimulation of electrons, where increasing surface area increases efficiency. Then a limited amount was added and at a certain concentration, which led to a reasonable improvement in efficiency. According to this procedure commercially available TiO2 (10 nm,25 nm,33 nm, 50 nm) standard. A TiO2 paste was prepared by mixing commercial TiO2, ethanol, distilled water, F:SnO2 (FTO film thickness 14 μm) conductive glasses. By using Dr. Blade method we got films with appropriate thicknesses, then by using several particle sizes (10 nm, 25 nm, 33 nm, 50 nm),many efficiencies were founded (2.39 %, 2.1 %,1.85 %,1.65%) respectively. Improved solar cell efficiency after addition of several chemical materials and the best that got is Cu (NO3)2. Efficiency became for (10 nm) (2.61 %, 2.34 %,2.1%,1.85%) respectively under 40 mW/cm2.</description><subject>additive</subject><subject>Direct reduction</subject><subject>Distilled water</subject><subject>DSSC</subject><subject>Dye-sensitized solar cells</subject><subject>Dyes</subject><subject>Efficiency</subject><subject>Ethanol</subject><subject>Film thickness</subject><subject>Glass electrodes</subject><subject>Nanoparticles</subject><subject>particle size</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>Surface area</subject><subject>Tin dioxide</subject><subject>TiO</subject><subject>Titanium dioxide</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhosoOKe_wYB3Qm2Stkl6KWN-MZjgvA5ZciIZXVuTTth-vSkVRRDMTcLJ855zeJLkkuAbgoXICC9oysqKZQTjPCMZJhRzfpRMvn-Ov99CnCZnIWwiGQ-fJG9za0H3qLWoU753ugYU3AGGwsotKVKNQcoY17sPQFvVg3eqDqhvkdt2vo1Fs48RaEJEDmBQaGvlkYY6UmCt0w4avT9PTmzMwcXXPU1e7-ar2UO6WN4_zm4XqS5K2qdMFVhhxTFj3JKCYVPZtaGkyksoTVkZXgjgHAsgRQ7AwBaWAgi9VpoKwvNpcjX2jbu97yD0ctPufBNHSlpySoRglEWKj5T2bQgerOy82yq_lwTLwaocfMnBnRysSiJHqzF5PSZd2_20fnqevfwGZWdshPM_4P9GfAJ53odc</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Ali, Falah H</creator><creator>Alwan, Dheyaa B</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20180501</creationdate><title>Effect of particle size of TiO2 and additive materials to improve dye sensitized solar cells efficiency</title><author>Ali, Falah H ; Alwan, Dheyaa B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-6a40a0a70667f1460d9fbd21935e5d59d748e7708e143ee6ef4f2ee8cbac28173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>additive</topic><topic>Direct reduction</topic><topic>Distilled water</topic><topic>DSSC</topic><topic>Dye-sensitized solar cells</topic><topic>Dyes</topic><topic>Efficiency</topic><topic>Ethanol</topic><topic>Film thickness</topic><topic>Glass electrodes</topic><topic>Nanoparticles</topic><topic>particle size</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>Surface area</topic><topic>Tin dioxide</topic><topic>TiO</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Falah H</creatorcontrib><creatorcontrib>Alwan, Dheyaa B</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Falah H</au><au>Alwan, Dheyaa B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of particle size of TiO2 and additive materials to improve dye sensitized solar cells efficiency</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>1003</volume><issue>1</issue><spage>12077</spage><pages>12077-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>It became a great interest Dye-sensitized solar cells (DSSC) as a successful alternative to silicon solar cells in terms of cost and simplicity. These cells rely on a semi-conductive material of electricity TiO2 nanocrystalline which encapsulates glass electrodes from the connected side at a temperature 450°C. In this work, the effect of nanoparticle size shows the size of atoms. The smaller the size of the atoms, the greater the surface area and thus the sufficient absorption of the dye and the stimulation of electrons, where increasing surface area increases efficiency. Then a limited amount was added and at a certain concentration, which led to a reasonable improvement in efficiency. According to this procedure commercially available TiO2 (10 nm,25 nm,33 nm, 50 nm) standard. A TiO2 paste was prepared by mixing commercial TiO2, ethanol, distilled water, F:SnO2 (FTO film thickness 14 μm) conductive glasses. By using Dr. Blade method we got films with appropriate thicknesses, then by using several particle sizes (10 nm, 25 nm, 33 nm, 50 nm),many efficiencies were founded (2.39 %, 2.1 %,1.85 %,1.65%) respectively. Improved solar cell efficiency after addition of several chemical materials and the best that got is Cu (NO3)2. Efficiency became for (10 nm) (2.61 %, 2.34 %,2.1%,1.85%) respectively under 40 mW/cm2.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1003/1/012077</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2018-05, Vol.1003 (1), p.12077 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2572188626 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | additive Direct reduction Distilled water DSSC Dye-sensitized solar cells Dyes Efficiency Ethanol Film thickness Glass electrodes Nanoparticles particle size Photovoltaic cells Physics Surface area Tin dioxide TiO Titanium dioxide |
title | Effect of particle size of TiO2 and additive materials to improve dye sensitized solar cells efficiency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20particle%20size%20of%20TiO2%20and%20additive%20materials%20to%20improve%20dye%20sensitized%20solar%20cells%20efficiency&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Ali,%20Falah%20H&rft.date=2018-05-01&rft.volume=1003&rft.issue=1&rft.spage=12077&rft.pages=12077-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1003/1/012077&rft_dat=%3Cproquest_iop_j%3E2572188626%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572188626&rft_id=info:pmid/&rfr_iscdi=true |