Effect of particle size of TiO2 and additive materials to improve dye sensitized solar cells efficiency

It became a great interest Dye-sensitized solar cells (DSSC) as a successful alternative to silicon solar cells in terms of cost and simplicity. These cells rely on a semi-conductive material of electricity TiO2 nanocrystalline which encapsulates glass electrodes from the connected side at a tempera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2018-05, Vol.1003 (1), p.12077
Hauptverfasser: Ali, Falah H, Alwan, Dheyaa B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12077
container_title Journal of physics. Conference series
container_volume 1003
creator Ali, Falah H
Alwan, Dheyaa B
description It became a great interest Dye-sensitized solar cells (DSSC) as a successful alternative to silicon solar cells in terms of cost and simplicity. These cells rely on a semi-conductive material of electricity TiO2 nanocrystalline which encapsulates glass electrodes from the connected side at a temperature 450°C. In this work, the effect of nanoparticle size shows the size of atoms. The smaller the size of the atoms, the greater the surface area and thus the sufficient absorption of the dye and the stimulation of electrons, where increasing surface area increases efficiency. Then a limited amount was added and at a certain concentration, which led to a reasonable improvement in efficiency. According to this procedure commercially available TiO2 (10 nm,25 nm,33 nm, 50 nm) standard. A TiO2 paste was prepared by mixing commercial TiO2, ethanol, distilled water, F:SnO2 (FTO film thickness 14 μm) conductive glasses. By using Dr. Blade method we got films with appropriate thicknesses, then by using several particle sizes (10 nm, 25 nm, 33 nm, 50 nm),many efficiencies were founded (2.39 %, 2.1 %,1.85 %,1.65%) respectively. Improved solar cell efficiency after addition of several chemical materials and the best that got is Cu (NO3)2. Efficiency became for (10 nm) (2.61 %, 2.34 %,2.1%,1.85%) respectively under 40 mW/cm2.
doi_str_mv 10.1088/1742-6596/1003/1/012077
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2572188626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572188626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-6a40a0a70667f1460d9fbd21935e5d59d748e7708e143ee6ef4f2ee8cbac28173</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhosoOKe_wYB3Qm2Stkl6KWN-MZjgvA5ZciIZXVuTTth-vSkVRRDMTcLJ855zeJLkkuAbgoXICC9oysqKZQTjPCMZJhRzfpRMvn-Ov99CnCZnIWwiGQ-fJG9za0H3qLWoU753ugYU3AGGwsotKVKNQcoY17sPQFvVg3eqDqhvkdt2vo1Fs48RaEJEDmBQaGvlkYY6UmCt0w4avT9PTmzMwcXXPU1e7-ar2UO6WN4_zm4XqS5K2qdMFVhhxTFj3JKCYVPZtaGkyksoTVkZXgjgHAsgRQ7AwBaWAgi9VpoKwvNpcjX2jbu97yD0ctPufBNHSlpySoRglEWKj5T2bQgerOy82yq_lwTLwaocfMnBnRysSiJHqzF5PSZd2_20fnqevfwGZWdshPM_4P9GfAJ53odc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572188626</pqid></control><display><type>article</type><title>Effect of particle size of TiO2 and additive materials to improve dye sensitized solar cells efficiency</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ali, Falah H ; Alwan, Dheyaa B</creator><creatorcontrib>Ali, Falah H ; Alwan, Dheyaa B</creatorcontrib><description>It became a great interest Dye-sensitized solar cells (DSSC) as a successful alternative to silicon solar cells in terms of cost and simplicity. These cells rely on a semi-conductive material of electricity TiO2 nanocrystalline which encapsulates glass electrodes from the connected side at a temperature 450°C. In this work, the effect of nanoparticle size shows the size of atoms. The smaller the size of the atoms, the greater the surface area and thus the sufficient absorption of the dye and the stimulation of electrons, where increasing surface area increases efficiency. Then a limited amount was added and at a certain concentration, which led to a reasonable improvement in efficiency. According to this procedure commercially available TiO2 (10 nm,25 nm,33 nm, 50 nm) standard. A TiO2 paste was prepared by mixing commercial TiO2, ethanol, distilled water, F:SnO2 (FTO film thickness 14 μm) conductive glasses. By using Dr. Blade method we got films with appropriate thicknesses, then by using several particle sizes (10 nm, 25 nm, 33 nm, 50 nm),many efficiencies were founded (2.39 %, 2.1 %,1.85 %,1.65%) respectively. Improved solar cell efficiency after addition of several chemical materials and the best that got is Cu (NO3)2. Efficiency became for (10 nm) (2.61 %, 2.34 %,2.1%,1.85%) respectively under 40 mW/cm2.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1003/1/012077</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>additive ; Direct reduction ; Distilled water ; DSSC ; Dye-sensitized solar cells ; Dyes ; Efficiency ; Ethanol ; Film thickness ; Glass electrodes ; Nanoparticles ; particle size ; Photovoltaic cells ; Physics ; Surface area ; Tin dioxide ; TiO ; Titanium dioxide</subject><ispartof>Journal of physics. Conference series, 2018-05, Vol.1003 (1), p.12077</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-6a40a0a70667f1460d9fbd21935e5d59d748e7708e143ee6ef4f2ee8cbac28173</citedby><cites>FETCH-LOGICAL-c452t-6a40a0a70667f1460d9fbd21935e5d59d748e7708e143ee6ef4f2ee8cbac28173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1003/1/012077/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,777,781,27905,27906,38849,38871,53821,53848</link.rule.ids></links><search><creatorcontrib>Ali, Falah H</creatorcontrib><creatorcontrib>Alwan, Dheyaa B</creatorcontrib><title>Effect of particle size of TiO2 and additive materials to improve dye sensitized solar cells efficiency</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>It became a great interest Dye-sensitized solar cells (DSSC) as a successful alternative to silicon solar cells in terms of cost and simplicity. These cells rely on a semi-conductive material of electricity TiO2 nanocrystalline which encapsulates glass electrodes from the connected side at a temperature 450°C. In this work, the effect of nanoparticle size shows the size of atoms. The smaller the size of the atoms, the greater the surface area and thus the sufficient absorption of the dye and the stimulation of electrons, where increasing surface area increases efficiency. Then a limited amount was added and at a certain concentration, which led to a reasonable improvement in efficiency. According to this procedure commercially available TiO2 (10 nm,25 nm,33 nm, 50 nm) standard. A TiO2 paste was prepared by mixing commercial TiO2, ethanol, distilled water, F:SnO2 (FTO film thickness 14 μm) conductive glasses. By using Dr. Blade method we got films with appropriate thicknesses, then by using several particle sizes (10 nm, 25 nm, 33 nm, 50 nm),many efficiencies were founded (2.39 %, 2.1 %,1.85 %,1.65%) respectively. Improved solar cell efficiency after addition of several chemical materials and the best that got is Cu (NO3)2. Efficiency became for (10 nm) (2.61 %, 2.34 %,2.1%,1.85%) respectively under 40 mW/cm2.</description><subject>additive</subject><subject>Direct reduction</subject><subject>Distilled water</subject><subject>DSSC</subject><subject>Dye-sensitized solar cells</subject><subject>Dyes</subject><subject>Efficiency</subject><subject>Ethanol</subject><subject>Film thickness</subject><subject>Glass electrodes</subject><subject>Nanoparticles</subject><subject>particle size</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>Surface area</subject><subject>Tin dioxide</subject><subject>TiO</subject><subject>Titanium dioxide</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhosoOKe_wYB3Qm2Stkl6KWN-MZjgvA5ZciIZXVuTTth-vSkVRRDMTcLJ855zeJLkkuAbgoXICC9oysqKZQTjPCMZJhRzfpRMvn-Ov99CnCZnIWwiGQ-fJG9za0H3qLWoU753ugYU3AGGwsotKVKNQcoY17sPQFvVg3eqDqhvkdt2vo1Fs48RaEJEDmBQaGvlkYY6UmCt0w4avT9PTmzMwcXXPU1e7-ar2UO6WN4_zm4XqS5K2qdMFVhhxTFj3JKCYVPZtaGkyksoTVkZXgjgHAsgRQ7AwBaWAgi9VpoKwvNpcjX2jbu97yD0ctPufBNHSlpySoRglEWKj5T2bQgerOy82yq_lwTLwaocfMnBnRysSiJHqzF5PSZd2_20fnqevfwGZWdshPM_4P9GfAJ53odc</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Ali, Falah H</creator><creator>Alwan, Dheyaa B</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20180501</creationdate><title>Effect of particle size of TiO2 and additive materials to improve dye sensitized solar cells efficiency</title><author>Ali, Falah H ; Alwan, Dheyaa B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-6a40a0a70667f1460d9fbd21935e5d59d748e7708e143ee6ef4f2ee8cbac28173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>additive</topic><topic>Direct reduction</topic><topic>Distilled water</topic><topic>DSSC</topic><topic>Dye-sensitized solar cells</topic><topic>Dyes</topic><topic>Efficiency</topic><topic>Ethanol</topic><topic>Film thickness</topic><topic>Glass electrodes</topic><topic>Nanoparticles</topic><topic>particle size</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>Surface area</topic><topic>Tin dioxide</topic><topic>TiO</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Falah H</creatorcontrib><creatorcontrib>Alwan, Dheyaa B</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Falah H</au><au>Alwan, Dheyaa B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of particle size of TiO2 and additive materials to improve dye sensitized solar cells efficiency</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>1003</volume><issue>1</issue><spage>12077</spage><pages>12077-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>It became a great interest Dye-sensitized solar cells (DSSC) as a successful alternative to silicon solar cells in terms of cost and simplicity. These cells rely on a semi-conductive material of electricity TiO2 nanocrystalline which encapsulates glass electrodes from the connected side at a temperature 450°C. In this work, the effect of nanoparticle size shows the size of atoms. The smaller the size of the atoms, the greater the surface area and thus the sufficient absorption of the dye and the stimulation of electrons, where increasing surface area increases efficiency. Then a limited amount was added and at a certain concentration, which led to a reasonable improvement in efficiency. According to this procedure commercially available TiO2 (10 nm,25 nm,33 nm, 50 nm) standard. A TiO2 paste was prepared by mixing commercial TiO2, ethanol, distilled water, F:SnO2 (FTO film thickness 14 μm) conductive glasses. By using Dr. Blade method we got films with appropriate thicknesses, then by using several particle sizes (10 nm, 25 nm, 33 nm, 50 nm),many efficiencies were founded (2.39 %, 2.1 %,1.85 %,1.65%) respectively. Improved solar cell efficiency after addition of several chemical materials and the best that got is Cu (NO3)2. Efficiency became for (10 nm) (2.61 %, 2.34 %,2.1%,1.85%) respectively under 40 mW/cm2.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1003/1/012077</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2018-05, Vol.1003 (1), p.12077
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2572188626
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects additive
Direct reduction
Distilled water
DSSC
Dye-sensitized solar cells
Dyes
Efficiency
Ethanol
Film thickness
Glass electrodes
Nanoparticles
particle size
Photovoltaic cells
Physics
Surface area
Tin dioxide
TiO
Titanium dioxide
title Effect of particle size of TiO2 and additive materials to improve dye sensitized solar cells efficiency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20particle%20size%20of%20TiO2%20and%20additive%20materials%20to%20improve%20dye%20sensitized%20solar%20cells%20efficiency&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Ali,%20Falah%20H&rft.date=2018-05-01&rft.volume=1003&rft.issue=1&rft.spage=12077&rft.pages=12077-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1003/1/012077&rft_dat=%3Cproquest_iop_j%3E2572188626%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572188626&rft_id=info:pmid/&rfr_iscdi=true