Treatment of Outliers via Interpolation Method with Neural Network Forecast Performances
Outliers often lurk in many datasets, especially in real data. Such anomalous data can negatively affect statistical analyses, primarily normality, variance, and estimation aspects. Hence, handling the occurrences of outliers require special attention. Therefore, it is important to determine the sui...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2018-04, Vol.995 (1), p.12025 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12025 |
container_title | Journal of physics. Conference series |
container_volume | 995 |
creator | Wahir, N. A. Nor, M. E. Rusiman, M. S. Gopal, K. |
description | Outliers often lurk in many datasets, especially in real data. Such anomalous data can negatively affect statistical analyses, primarily normality, variance, and estimation aspects. Hence, handling the occurrences of outliers require special attention. Therefore, it is important to determine the suitable ways in treating outliers so as to ensure that the quality of the analyzed data is indeed high. As such, this paper discusses an alternative method to treat outliers via linear interpolation method. In fact, assuming outlier as a missing value in the dataset allows the application of the interpolation method to interpolate the outliers thus, enabling the comparison of data series using forecast accuracy before and after outlier treatment. With that, the monthly time series of Malaysian tourist arrivals from January 1998 until December 2015 had been used to interpolate the new series. The results indicated that the linear interpolation method, which was comprised of improved time series data, displayed better results, when compared to the original time series data in forecasting from both Box-Jenkins and neural network approaches. |
doi_str_mv | 10.1088/1742-6596/995/1/012025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2572138738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572138738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a8d091b4ab111a34715e26f4d409b2cd6ef13a657b38374074a7db51eb76b8713</originalsourceid><addsrcrecordid>eNqFkFFLwzAUhYMoOKd_QQI--VCbm6ZN-ijD6WS6gRN8C2mbss6uqUnq8N_bUVEEwftyLtxz7oEPoXMgV0CECIEzGiRxmoRpGocQEqCExgdo9H04_N6FOEYnzm0IifrhI_Syslr5rW48NiVedL6utHX4vVJ41nhtW1MrX5kGP2i_NgXeVX6NH3VnVd2L3xn7iqfG6lw5j5falsZuVZNrd4qOSlU7ffalY_Q8vVlN7oL54nY2uZ4HOSPCB0oUJIWMqQwAVMQ4xJomJSsYSTOaF4kuIVJJzLNIRJwRzhQvshh0xpNMcIjG6GL421rz1mnn5cZ0tukrJY05hUjwPjlGyeDKrXHO6lK2ttoq-yGByD1FuQck97BkT1GCHCj2wcshWJn25_P9cvL0yyfbouy99A_vPwWfL5iBdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572138738</pqid></control><display><type>article</type><title>Treatment of Outliers via Interpolation Method with Neural Network Forecast Performances</title><source>IOP Publishing Free Content</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wahir, N. A. ; Nor, M. E. ; Rusiman, M. S. ; Gopal, K.</creator><creatorcontrib>Wahir, N. A. ; Nor, M. E. ; Rusiman, M. S. ; Gopal, K.</creatorcontrib><description>Outliers often lurk in many datasets, especially in real data. Such anomalous data can negatively affect statistical analyses, primarily normality, variance, and estimation aspects. Hence, handling the occurrences of outliers require special attention. Therefore, it is important to determine the suitable ways in treating outliers so as to ensure that the quality of the analyzed data is indeed high. As such, this paper discusses an alternative method to treat outliers via linear interpolation method. In fact, assuming outlier as a missing value in the dataset allows the application of the interpolation method to interpolate the outliers thus, enabling the comparison of data series using forecast accuracy before and after outlier treatment. With that, the monthly time series of Malaysian tourist arrivals from January 1998 until December 2015 had been used to interpolate the new series. The results indicated that the linear interpolation method, which was comprised of improved time series data, displayed better results, when compared to the original time series data in forecasting from both Box-Jenkins and neural network approaches.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/995/1/012025</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Datasets ; Interpolation ; Neural networks ; Normality ; Outliers (statistics) ; Physics ; Statistical analysis ; Time series ; Variance analysis</subject><ispartof>Journal of physics. Conference series, 2018-04, Vol.995 (1), p.12025</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a8d091b4ab111a34715e26f4d409b2cd6ef13a657b38374074a7db51eb76b8713</citedby><cites>FETCH-LOGICAL-c408t-a8d091b4ab111a34715e26f4d409b2cd6ef13a657b38374074a7db51eb76b8713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/995/1/012025/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Wahir, N. A.</creatorcontrib><creatorcontrib>Nor, M. E.</creatorcontrib><creatorcontrib>Rusiman, M. S.</creatorcontrib><creatorcontrib>Gopal, K.</creatorcontrib><title>Treatment of Outliers via Interpolation Method with Neural Network Forecast Performances</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Outliers often lurk in many datasets, especially in real data. Such anomalous data can negatively affect statistical analyses, primarily normality, variance, and estimation aspects. Hence, handling the occurrences of outliers require special attention. Therefore, it is important to determine the suitable ways in treating outliers so as to ensure that the quality of the analyzed data is indeed high. As such, this paper discusses an alternative method to treat outliers via linear interpolation method. In fact, assuming outlier as a missing value in the dataset allows the application of the interpolation method to interpolate the outliers thus, enabling the comparison of data series using forecast accuracy before and after outlier treatment. With that, the monthly time series of Malaysian tourist arrivals from January 1998 until December 2015 had been used to interpolate the new series. The results indicated that the linear interpolation method, which was comprised of improved time series data, displayed better results, when compared to the original time series data in forecasting from both Box-Jenkins and neural network approaches.</description><subject>Datasets</subject><subject>Interpolation</subject><subject>Neural networks</subject><subject>Normality</subject><subject>Outliers (statistics)</subject><subject>Physics</subject><subject>Statistical analysis</subject><subject>Time series</subject><subject>Variance analysis</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkFFLwzAUhYMoOKd_QQI--VCbm6ZN-ijD6WS6gRN8C2mbss6uqUnq8N_bUVEEwftyLtxz7oEPoXMgV0CECIEzGiRxmoRpGocQEqCExgdo9H04_N6FOEYnzm0IifrhI_Syslr5rW48NiVedL6utHX4vVJ41nhtW1MrX5kGP2i_NgXeVX6NH3VnVd2L3xn7iqfG6lw5j5falsZuVZNrd4qOSlU7ffalY_Q8vVlN7oL54nY2uZ4HOSPCB0oUJIWMqQwAVMQ4xJomJSsYSTOaF4kuIVJJzLNIRJwRzhQvshh0xpNMcIjG6GL421rz1mnn5cZ0tukrJY05hUjwPjlGyeDKrXHO6lK2ttoq-yGByD1FuQck97BkT1GCHCj2wcshWJn25_P9cvL0yyfbouy99A_vPwWfL5iBdQ</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Wahir, N. A.</creator><creator>Nor, M. E.</creator><creator>Rusiman, M. S.</creator><creator>Gopal, K.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20180401</creationdate><title>Treatment of Outliers via Interpolation Method with Neural Network Forecast Performances</title><author>Wahir, N. A. ; Nor, M. E. ; Rusiman, M. S. ; Gopal, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a8d091b4ab111a34715e26f4d409b2cd6ef13a657b38374074a7db51eb76b8713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Datasets</topic><topic>Interpolation</topic><topic>Neural networks</topic><topic>Normality</topic><topic>Outliers (statistics)</topic><topic>Physics</topic><topic>Statistical analysis</topic><topic>Time series</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wahir, N. A.</creatorcontrib><creatorcontrib>Nor, M. E.</creatorcontrib><creatorcontrib>Rusiman, M. S.</creatorcontrib><creatorcontrib>Gopal, K.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wahir, N. A.</au><au>Nor, M. E.</au><au>Rusiman, M. S.</au><au>Gopal, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Treatment of Outliers via Interpolation Method with Neural Network Forecast Performances</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>995</volume><issue>1</issue><spage>12025</spage><pages>12025-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Outliers often lurk in many datasets, especially in real data. Such anomalous data can negatively affect statistical analyses, primarily normality, variance, and estimation aspects. Hence, handling the occurrences of outliers require special attention. Therefore, it is important to determine the suitable ways in treating outliers so as to ensure that the quality of the analyzed data is indeed high. As such, this paper discusses an alternative method to treat outliers via linear interpolation method. In fact, assuming outlier as a missing value in the dataset allows the application of the interpolation method to interpolate the outliers thus, enabling the comparison of data series using forecast accuracy before and after outlier treatment. With that, the monthly time series of Malaysian tourist arrivals from January 1998 until December 2015 had been used to interpolate the new series. The results indicated that the linear interpolation method, which was comprised of improved time series data, displayed better results, when compared to the original time series data in forecasting from both Box-Jenkins and neural network approaches.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/995/1/012025</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2018-04, Vol.995 (1), p.12025 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2572138738 |
source | IOP Publishing Free Content; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Datasets Interpolation Neural networks Normality Outliers (statistics) Physics Statistical analysis Time series Variance analysis |
title | Treatment of Outliers via Interpolation Method with Neural Network Forecast Performances |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A09%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Treatment%20of%20Outliers%20via%20Interpolation%20Method%20with%20Neural%20Network%20Forecast%20Performances&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Wahir,%20N.%20A.&rft.date=2018-04-01&rft.volume=995&rft.issue=1&rft.spage=12025&rft.pages=12025-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/995/1/012025&rft_dat=%3Cproquest_cross%3E2572138738%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572138738&rft_id=info:pmid/&rfr_iscdi=true |