Dynamic Segmentation Of Behavior Patterns Based On Quantity Value Movement Using Fuzzy Subtractive Clustering Method
to understand by analyzing the pattern of changes in value movements that can dynamically vary over a given period with relative accuracy, an equipment is required based on the utilization of technical working principles or specific analytical method. This will affect the level of validity of the ou...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2018-03, Vol.974 (1), p.12009 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12009 |
container_title | Journal of physics. Conference series |
container_volume | 974 |
creator | Sangadji, Iriansyah Arvio, Yozika Indrianto |
description | to understand by analyzing the pattern of changes in value movements that can dynamically vary over a given period with relative accuracy, an equipment is required based on the utilization of technical working principles or specific analytical method. This will affect the level of validity of the output that will occur from this system. Subtractive clustering is based on the density (potential) size of data points in a space (variable). The basic concept of subtractive clustering is to determine the regions in a variable that has high potential for the surrounding points. In this paper result is segmentation of behavior pattern based on quantity value movement. It shows the number of clusters is formed and that has many members. |
doi_str_mv | 10.1088/1742-6596/974/1/012009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2572070473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572070473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a49176525df1fcd4149d6381cb595d133e5a3d1415cd1e7110ea107cbd4053413</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhosoOKd_QQJeeTGX0yRNe-mq84ONTea8DVmTbh1bW5N00P16WyYTQfDc5MB5nzfweN414DvAYdgHTv1ewKKgH3Hahz4GH-PoxOscD6fHPQzPvQtr1xiTZnjHcw91LrdZgmZ6udW5ky4rcjRJ0UCv5C4rDJpK57TJLRpIqxWa5OitkrnLXI0-5KbSaFzsdIuiuc3yJRpW-32NZtXCGZm4bKdRvKlsU9Eex9qtCnXpnaVyY_XV99v15sPH9_i5N5o8vcT3o15Cceh6kkbAA-YzlUKaKAo0UgEJIVmwiCkgRDNJFFBgiQLNAbCWgHmyUBQzQoF0vZtDb2mKz0pbJ9ZFZfLmS-Ez7mOOKSdNKjikElNYa3QqSpNtpakFYNEaFq080YoUjWEB4mC4Af0DmBXlT_O_0O0f0Os0nv3KiVKl5Aun6Isc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572070473</pqid></control><display><type>article</type><title>Dynamic Segmentation Of Behavior Patterns Based On Quantity Value Movement Using Fuzzy Subtractive Clustering Method</title><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sangadji, Iriansyah ; Arvio, Yozika ; Indrianto</creator><creatorcontrib>Sangadji, Iriansyah ; Arvio, Yozika ; Indrianto</creatorcontrib><description>to understand by analyzing the pattern of changes in value movements that can dynamically vary over a given period with relative accuracy, an equipment is required based on the utilization of technical working principles or specific analytical method. This will affect the level of validity of the output that will occur from this system. Subtractive clustering is based on the density (potential) size of data points in a space (variable). The basic concept of subtractive clustering is to determine the regions in a variable that has high potential for the surrounding points. In this paper result is segmentation of behavior pattern based on quantity value movement. It shows the number of clusters is formed and that has many members.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/974/1/012009</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Clustering ; Data points ; Pattern analysis ; Physics ; Segmentation</subject><ispartof>Journal of physics. Conference series, 2018-03, Vol.974 (1), p.12009</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a49176525df1fcd4149d6381cb595d133e5a3d1415cd1e7110ea107cbd4053413</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/974/1/012009/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Sangadji, Iriansyah</creatorcontrib><creatorcontrib>Arvio, Yozika</creatorcontrib><creatorcontrib>Indrianto</creatorcontrib><title>Dynamic Segmentation Of Behavior Patterns Based On Quantity Value Movement Using Fuzzy Subtractive Clustering Method</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>to understand by analyzing the pattern of changes in value movements that can dynamically vary over a given period with relative accuracy, an equipment is required based on the utilization of technical working principles or specific analytical method. This will affect the level of validity of the output that will occur from this system. Subtractive clustering is based on the density (potential) size of data points in a space (variable). The basic concept of subtractive clustering is to determine the regions in a variable that has high potential for the surrounding points. In this paper result is segmentation of behavior pattern based on quantity value movement. It shows the number of clusters is formed and that has many members.</description><subject>Clustering</subject><subject>Data points</subject><subject>Pattern analysis</subject><subject>Physics</subject><subject>Segmentation</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhosoOKd_QQJeeTGX0yRNe-mq84ONTea8DVmTbh1bW5N00P16WyYTQfDc5MB5nzfweN414DvAYdgHTv1ewKKgH3Hahz4GH-PoxOscD6fHPQzPvQtr1xiTZnjHcw91LrdZgmZ6udW5ky4rcjRJ0UCv5C4rDJpK57TJLRpIqxWa5OitkrnLXI0-5KbSaFzsdIuiuc3yJRpW-32NZtXCGZm4bKdRvKlsU9Eex9qtCnXpnaVyY_XV99v15sPH9_i5N5o8vcT3o15Cceh6kkbAA-YzlUKaKAo0UgEJIVmwiCkgRDNJFFBgiQLNAbCWgHmyUBQzQoF0vZtDb2mKz0pbJ9ZFZfLmS-Ez7mOOKSdNKjikElNYa3QqSpNtpakFYNEaFq080YoUjWEB4mC4Af0DmBXlT_O_0O0f0Os0nv3KiVKl5Aun6Isc</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Sangadji, Iriansyah</creator><creator>Arvio, Yozika</creator><creator>Indrianto</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20180301</creationdate><title>Dynamic Segmentation Of Behavior Patterns Based On Quantity Value Movement Using Fuzzy Subtractive Clustering Method</title><author>Sangadji, Iriansyah ; Arvio, Yozika ; Indrianto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a49176525df1fcd4149d6381cb595d133e5a3d1415cd1e7110ea107cbd4053413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Clustering</topic><topic>Data points</topic><topic>Pattern analysis</topic><topic>Physics</topic><topic>Segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sangadji, Iriansyah</creatorcontrib><creatorcontrib>Arvio, Yozika</creatorcontrib><creatorcontrib>Indrianto</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sangadji, Iriansyah</au><au>Arvio, Yozika</au><au>Indrianto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Segmentation Of Behavior Patterns Based On Quantity Value Movement Using Fuzzy Subtractive Clustering Method</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>974</volume><issue>1</issue><spage>12009</spage><pages>12009-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>to understand by analyzing the pattern of changes in value movements that can dynamically vary over a given period with relative accuracy, an equipment is required based on the utilization of technical working principles or specific analytical method. This will affect the level of validity of the output that will occur from this system. Subtractive clustering is based on the density (potential) size of data points in a space (variable). The basic concept of subtractive clustering is to determine the regions in a variable that has high potential for the surrounding points. In this paper result is segmentation of behavior pattern based on quantity value movement. It shows the number of clusters is formed and that has many members.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/974/1/012009</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2018-03, Vol.974 (1), p.12009 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2572070473 |
source | Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Clustering Data points Pattern analysis Physics Segmentation |
title | Dynamic Segmentation Of Behavior Patterns Based On Quantity Value Movement Using Fuzzy Subtractive Clustering Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A01%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Segmentation%20Of%20Behavior%20Patterns%20Based%20On%20Quantity%20Value%20Movement%20Using%20Fuzzy%20Subtractive%20Clustering%20Method&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Sangadji,%20Iriansyah&rft.date=2018-03-01&rft.volume=974&rft.issue=1&rft.spage=12009&rft.pages=12009-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/974/1/012009&rft_dat=%3Cproquest_cross%3E2572070473%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572070473&rft_id=info:pmid/&rfr_iscdi=true |