Stochastic Analysis of Short-Term Structural Responses and Fatigue Damages of A Submerged Tension Leg Platform Wind Turbine in Wind and Waves

In connection with the design of floating wind turbines, stochastic dynamic analysis is a critical task considering nonlinear wind and wave forces. To study the random structural responses of a newly designed submerged tension leg platform (STLP) wind turbine, a set of dynamic simulations and compar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:China ocean engineering 2021-09, Vol.35 (4), p.566-577
Hauptverfasser: Han, Yan-qing, Le, Cong-huan, Zhang, Pu-yang, Dang, Li, Fan, Qing-lai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 577
container_issue 4
container_start_page 566
container_title China ocean engineering
container_volume 35
creator Han, Yan-qing
Le, Cong-huan
Zhang, Pu-yang
Dang, Li
Fan, Qing-lai
description In connection with the design of floating wind turbines, stochastic dynamic analysis is a critical task considering nonlinear wind and wave forces. To study the random structural responses of a newly designed submerged tension leg platform (STLP) wind turbine, a set of dynamic simulations and comparison analysis with the MIT/NREL TLP wind turbine are carried out. The signal filter method is used to evaluate the mean and standard deviations of the structural response. Furthermore, the extreme responses are estimated by using the mean upcrossing rate method. The fatigue damages for blade root, tower, and mooring line are also studied according to the simulated time-series. The results and comparison analysis show that the STLP gives small surge and pitch motions and mooring line tensions in operational sea states due to the small water-plane area. Additionally, in severe sea states, the STLP gives lower extreme values of platform pitch, slightly larger surge and heave motions and better towerbase and mooring line fatigue performances than those of the MIT/NREL TLP. It is found that the STLP wind turbine has good performances in structural responses and could be a potential type for exploiting the wind resources located in deep waters.
doi_str_mv 10.1007/s13344-021-0051-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2571473141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2571473141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-4a7b784250fc1fec023eb607ad05eecbd088117431c54e3971d92ccafbeed4f43</originalsourceid><addsrcrecordid>eNp1kM1KxDAURoMoOI4-gLuA62hum5p2OfgPA4oz4jKk6W2tzDRjbirMQ_jOdqzgylW4cM4HOYydgjwHKfUFQZoqJWQCQsoMxHaPTRIoQOSFyvbZROaFFJnK9SE7InrfMZmCCftaRO_eLMXW8VlnV1tqifuaL958iGKJYc0XMfQu9sGu-DPSxneExG1X8Vsb26ZHfm3XtsEfbcYXfbnG0GDFl9hR6zs-x4Y_rWys_TD22g7isg9l2yFvu_Hejb3aT6RjdlDbFeHJ7ztlL7c3y6t7MX-8e7iazYVL4TIKZXWpc5VksnZQo5NJiuWl1LaSGaIrK5nnAFql4DKFaaGhKhLnbF0iVqpW6ZSdjbub4D96pGjefR-G75NJMg1Kp6BgoGCkXPBEAWuzCe3ahq0BaXbVzVjdDNXNrqjZDk4yOjSwXYPhb_l_6RsSqYcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571473141</pqid></control><display><type>article</type><title>Stochastic Analysis of Short-Term Structural Responses and Fatigue Damages of A Submerged Tension Leg Platform Wind Turbine in Wind and Waves</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Han, Yan-qing ; Le, Cong-huan ; Zhang, Pu-yang ; Dang, Li ; Fan, Qing-lai</creator><creatorcontrib>Han, Yan-qing ; Le, Cong-huan ; Zhang, Pu-yang ; Dang, Li ; Fan, Qing-lai</creatorcontrib><description>In connection with the design of floating wind turbines, stochastic dynamic analysis is a critical task considering nonlinear wind and wave forces. To study the random structural responses of a newly designed submerged tension leg platform (STLP) wind turbine, a set of dynamic simulations and comparison analysis with the MIT/NREL TLP wind turbine are carried out. The signal filter method is used to evaluate the mean and standard deviations of the structural response. Furthermore, the extreme responses are estimated by using the mean upcrossing rate method. The fatigue damages for blade root, tower, and mooring line are also studied according to the simulated time-series. The results and comparison analysis show that the STLP gives small surge and pitch motions and mooring line tensions in operational sea states due to the small water-plane area. Additionally, in severe sea states, the STLP gives lower extreme values of platform pitch, slightly larger surge and heave motions and better towerbase and mooring line fatigue performances than those of the MIT/NREL TLP. It is found that the STLP wind turbine has good performances in structural responses and could be a potential type for exploiting the wind resources located in deep waters.</description><identifier>ISSN: 0890-5487</identifier><identifier>EISSN: 2191-8945</identifier><identifier>DOI: 10.1007/s13344-021-0051-y</identifier><language>eng</language><publisher>Nanjing: Chinese Ocean Engineering Society</publisher><subject>Coastal Sciences ; Dynamic analysis ; Engineering ; Extreme values ; Fatigue failure ; Floating platforms ; Fluid- and Aerodynamics ; Marine &amp; Freshwater Sciences ; Mooring ; Mooring lines ; Mooring systems ; Numerical and Computational Physics ; Oceanography ; Offshore Engineering ; Offshore structures ; Sea state ; Sea states ; Simulation ; Structural response ; Tension ; Tension leg platforms ; Turbine engines ; Turbines ; Wave forces ; Wind power ; Wind turbines</subject><ispartof>China ocean engineering, 2021-09, Vol.35 (4), p.566-577</ispartof><rights>Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-4a7b784250fc1fec023eb607ad05eecbd088117431c54e3971d92ccafbeed4f43</citedby><cites>FETCH-LOGICAL-c316t-4a7b784250fc1fec023eb607ad05eecbd088117431c54e3971d92ccafbeed4f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13344-021-0051-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13344-021-0051-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Han, Yan-qing</creatorcontrib><creatorcontrib>Le, Cong-huan</creatorcontrib><creatorcontrib>Zhang, Pu-yang</creatorcontrib><creatorcontrib>Dang, Li</creatorcontrib><creatorcontrib>Fan, Qing-lai</creatorcontrib><title>Stochastic Analysis of Short-Term Structural Responses and Fatigue Damages of A Submerged Tension Leg Platform Wind Turbine in Wind and Waves</title><title>China ocean engineering</title><addtitle>China Ocean Eng</addtitle><description>In connection with the design of floating wind turbines, stochastic dynamic analysis is a critical task considering nonlinear wind and wave forces. To study the random structural responses of a newly designed submerged tension leg platform (STLP) wind turbine, a set of dynamic simulations and comparison analysis with the MIT/NREL TLP wind turbine are carried out. The signal filter method is used to evaluate the mean and standard deviations of the structural response. Furthermore, the extreme responses are estimated by using the mean upcrossing rate method. The fatigue damages for blade root, tower, and mooring line are also studied according to the simulated time-series. The results and comparison analysis show that the STLP gives small surge and pitch motions and mooring line tensions in operational sea states due to the small water-plane area. Additionally, in severe sea states, the STLP gives lower extreme values of platform pitch, slightly larger surge and heave motions and better towerbase and mooring line fatigue performances than those of the MIT/NREL TLP. It is found that the STLP wind turbine has good performances in structural responses and could be a potential type for exploiting the wind resources located in deep waters.</description><subject>Coastal Sciences</subject><subject>Dynamic analysis</subject><subject>Engineering</subject><subject>Extreme values</subject><subject>Fatigue failure</subject><subject>Floating platforms</subject><subject>Fluid- and Aerodynamics</subject><subject>Marine &amp; Freshwater Sciences</subject><subject>Mooring</subject><subject>Mooring lines</subject><subject>Mooring systems</subject><subject>Numerical and Computational Physics</subject><subject>Oceanography</subject><subject>Offshore Engineering</subject><subject>Offshore structures</subject><subject>Sea state</subject><subject>Sea states</subject><subject>Simulation</subject><subject>Structural response</subject><subject>Tension</subject><subject>Tension leg platforms</subject><subject>Turbine engines</subject><subject>Turbines</subject><subject>Wave forces</subject><subject>Wind power</subject><subject>Wind turbines</subject><issn>0890-5487</issn><issn>2191-8945</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxDAURoMoOI4-gLuA62hum5p2OfgPA4oz4jKk6W2tzDRjbirMQ_jOdqzgylW4cM4HOYydgjwHKfUFQZoqJWQCQsoMxHaPTRIoQOSFyvbZROaFFJnK9SE7InrfMZmCCftaRO_eLMXW8VlnV1tqifuaL958iGKJYc0XMfQu9sGu-DPSxneExG1X8Vsb26ZHfm3XtsEfbcYXfbnG0GDFl9hR6zs-x4Y_rWys_TD22g7isg9l2yFvu_Hejb3aT6RjdlDbFeHJ7ztlL7c3y6t7MX-8e7iazYVL4TIKZXWpc5VksnZQo5NJiuWl1LaSGaIrK5nnAFql4DKFaaGhKhLnbF0iVqpW6ZSdjbub4D96pGjefR-G75NJMg1Kp6BgoGCkXPBEAWuzCe3ahq0BaXbVzVjdDNXNrqjZDk4yOjSwXYPhb_l_6RsSqYcQ</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Han, Yan-qing</creator><creator>Le, Cong-huan</creator><creator>Zhang, Pu-yang</creator><creator>Dang, Li</creator><creator>Fan, Qing-lai</creator><general>Chinese Ocean Engineering Society</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20210901</creationdate><title>Stochastic Analysis of Short-Term Structural Responses and Fatigue Damages of A Submerged Tension Leg Platform Wind Turbine in Wind and Waves</title><author>Han, Yan-qing ; Le, Cong-huan ; Zhang, Pu-yang ; Dang, Li ; Fan, Qing-lai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-4a7b784250fc1fec023eb607ad05eecbd088117431c54e3971d92ccafbeed4f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coastal Sciences</topic><topic>Dynamic analysis</topic><topic>Engineering</topic><topic>Extreme values</topic><topic>Fatigue failure</topic><topic>Floating platforms</topic><topic>Fluid- and Aerodynamics</topic><topic>Marine &amp; Freshwater Sciences</topic><topic>Mooring</topic><topic>Mooring lines</topic><topic>Mooring systems</topic><topic>Numerical and Computational Physics</topic><topic>Oceanography</topic><topic>Offshore Engineering</topic><topic>Offshore structures</topic><topic>Sea state</topic><topic>Sea states</topic><topic>Simulation</topic><topic>Structural response</topic><topic>Tension</topic><topic>Tension leg platforms</topic><topic>Turbine engines</topic><topic>Turbines</topic><topic>Wave forces</topic><topic>Wind power</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Yan-qing</creatorcontrib><creatorcontrib>Le, Cong-huan</creatorcontrib><creatorcontrib>Zhang, Pu-yang</creatorcontrib><creatorcontrib>Dang, Li</creatorcontrib><creatorcontrib>Fan, Qing-lai</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>China ocean engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Yan-qing</au><au>Le, Cong-huan</au><au>Zhang, Pu-yang</au><au>Dang, Li</au><au>Fan, Qing-lai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Analysis of Short-Term Structural Responses and Fatigue Damages of A Submerged Tension Leg Platform Wind Turbine in Wind and Waves</atitle><jtitle>China ocean engineering</jtitle><stitle>China Ocean Eng</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>35</volume><issue>4</issue><spage>566</spage><epage>577</epage><pages>566-577</pages><issn>0890-5487</issn><eissn>2191-8945</eissn><abstract>In connection with the design of floating wind turbines, stochastic dynamic analysis is a critical task considering nonlinear wind and wave forces. To study the random structural responses of a newly designed submerged tension leg platform (STLP) wind turbine, a set of dynamic simulations and comparison analysis with the MIT/NREL TLP wind turbine are carried out. The signal filter method is used to evaluate the mean and standard deviations of the structural response. Furthermore, the extreme responses are estimated by using the mean upcrossing rate method. The fatigue damages for blade root, tower, and mooring line are also studied according to the simulated time-series. The results and comparison analysis show that the STLP gives small surge and pitch motions and mooring line tensions in operational sea states due to the small water-plane area. Additionally, in severe sea states, the STLP gives lower extreme values of platform pitch, slightly larger surge and heave motions and better towerbase and mooring line fatigue performances than those of the MIT/NREL TLP. It is found that the STLP wind turbine has good performances in structural responses and could be a potential type for exploiting the wind resources located in deep waters.</abstract><cop>Nanjing</cop><pub>Chinese Ocean Engineering Society</pub><doi>10.1007/s13344-021-0051-y</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0890-5487
ispartof China ocean engineering, 2021-09, Vol.35 (4), p.566-577
issn 0890-5487
2191-8945
language eng
recordid cdi_proquest_journals_2571473141
source SpringerNature Journals; Alma/SFX Local Collection
subjects Coastal Sciences
Dynamic analysis
Engineering
Extreme values
Fatigue failure
Floating platforms
Fluid- and Aerodynamics
Marine & Freshwater Sciences
Mooring
Mooring lines
Mooring systems
Numerical and Computational Physics
Oceanography
Offshore Engineering
Offshore structures
Sea state
Sea states
Simulation
Structural response
Tension
Tension leg platforms
Turbine engines
Turbines
Wave forces
Wind power
Wind turbines
title Stochastic Analysis of Short-Term Structural Responses and Fatigue Damages of A Submerged Tension Leg Platform Wind Turbine in Wind and Waves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Analysis%20of%20Short-Term%20Structural%20Responses%20and%20Fatigue%20Damages%20of%20A%20Submerged%20Tension%20Leg%20Platform%20Wind%20Turbine%20in%20Wind%20and%20Waves&rft.jtitle=China%20ocean%20engineering&rft.au=Han,%20Yan-qing&rft.date=2021-09-01&rft.volume=35&rft.issue=4&rft.spage=566&rft.epage=577&rft.pages=566-577&rft.issn=0890-5487&rft.eissn=2191-8945&rft_id=info:doi/10.1007/s13344-021-0051-y&rft_dat=%3Cproquest_cross%3E2571473141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2571473141&rft_id=info:pmid/&rfr_iscdi=true