Retrieve, Caption, Generate: Visual Grounding for Enhancing Commonsense in Text Generation Models
We investigate the use of multimodal information contained in images as an effective method for enhancing the commonsense of Transformer models for text generation. We perform experiments using BART and T5 on concept-to-text generation, specifically the task of generative commonsense reasoning, or C...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-03 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Feng, Steven Y Lu, Kevin Zhuofu Tao Alikhani, Malihe Mitamura, Teruko Hovy, Eduard Gangal, Varun |
description | We investigate the use of multimodal information contained in images as an effective method for enhancing the commonsense of Transformer models for text generation. We perform experiments using BART and T5 on concept-to-text generation, specifically the task of generative commonsense reasoning, or CommonGen. We call our approach VisCTG: Visually Grounded Concept-to-Text Generation. VisCTG involves captioning images representing appropriate everyday scenarios, and using these captions to enrich and steer the generation process. Comprehensive evaluation and analysis demonstrate that VisCTG noticeably improves model performance while successfully addressing several issues of the baseline generations, including poor commonsense, fluency, and specificity. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2571338957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2571338957</sourcerecordid><originalsourceid>FETCH-proquest_journals_25713389573</originalsourceid><addsrcrecordid>eNqNjE8LgkAUxJcgSMrv8KCrgu5mVlcxu3QJ6SpLvmrD3tr-iT5-BnUPBobhNzMjFnAh0ni14HzCQmtvSZLwZc6zTARMHtAZhU-MoJC9U5oiqJDQSIcbOCrrZQeV0Z5aRRc4awMlXSWdPqnQ97smi4NAEdT4cr_xcAR73WJnZ2x8lp3F8OtTNt-WdbGLe6MfHq1rbtobGlDDszwVYrXOcvFf6w3sEkTh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571338957</pqid></control><display><type>article</type><title>Retrieve, Caption, Generate: Visual Grounding for Enhancing Commonsense in Text Generation Models</title><source>Free E- Journals</source><creator>Feng, Steven Y ; Lu, Kevin ; Zhuofu Tao ; Alikhani, Malihe ; Mitamura, Teruko ; Hovy, Eduard ; Gangal, Varun</creator><creatorcontrib>Feng, Steven Y ; Lu, Kevin ; Zhuofu Tao ; Alikhani, Malihe ; Mitamura, Teruko ; Hovy, Eduard ; Gangal, Varun</creatorcontrib><description>We investigate the use of multimodal information contained in images as an effective method for enhancing the commonsense of Transformer models for text generation. We perform experiments using BART and T5 on concept-to-text generation, specifically the task of generative commonsense reasoning, or CommonGen. We call our approach VisCTG: Visually Grounded Concept-to-Text Generation. VisCTG involves captioning images representing appropriate everyday scenarios, and using these captions to enrich and steer the generation process. Comprehensive evaluation and analysis demonstrate that VisCTG noticeably improves model performance while successfully addressing several issues of the baseline generations, including poor commonsense, fluency, and specificity.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Image enhancement</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Feng, Steven Y</creatorcontrib><creatorcontrib>Lu, Kevin</creatorcontrib><creatorcontrib>Zhuofu Tao</creatorcontrib><creatorcontrib>Alikhani, Malihe</creatorcontrib><creatorcontrib>Mitamura, Teruko</creatorcontrib><creatorcontrib>Hovy, Eduard</creatorcontrib><creatorcontrib>Gangal, Varun</creatorcontrib><title>Retrieve, Caption, Generate: Visual Grounding for Enhancing Commonsense in Text Generation Models</title><title>arXiv.org</title><description>We investigate the use of multimodal information contained in images as an effective method for enhancing the commonsense of Transformer models for text generation. We perform experiments using BART and T5 on concept-to-text generation, specifically the task of generative commonsense reasoning, or CommonGen. We call our approach VisCTG: Visually Grounded Concept-to-Text Generation. VisCTG involves captioning images representing appropriate everyday scenarios, and using these captions to enrich and steer the generation process. Comprehensive evaluation and analysis demonstrate that VisCTG noticeably improves model performance while successfully addressing several issues of the baseline generations, including poor commonsense, fluency, and specificity.</description><subject>Image enhancement</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjE8LgkAUxJcgSMrv8KCrgu5mVlcxu3QJ6SpLvmrD3tr-iT5-BnUPBobhNzMjFnAh0ni14HzCQmtvSZLwZc6zTARMHtAZhU-MoJC9U5oiqJDQSIcbOCrrZQeV0Z5aRRc4awMlXSWdPqnQ97smi4NAEdT4cr_xcAR73WJnZ2x8lp3F8OtTNt-WdbGLe6MfHq1rbtobGlDDszwVYrXOcvFf6w3sEkTh</recordid><startdate>20220325</startdate><enddate>20220325</enddate><creator>Feng, Steven Y</creator><creator>Lu, Kevin</creator><creator>Zhuofu Tao</creator><creator>Alikhani, Malihe</creator><creator>Mitamura, Teruko</creator><creator>Hovy, Eduard</creator><creator>Gangal, Varun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220325</creationdate><title>Retrieve, Caption, Generate: Visual Grounding for Enhancing Commonsense in Text Generation Models</title><author>Feng, Steven Y ; Lu, Kevin ; Zhuofu Tao ; Alikhani, Malihe ; Mitamura, Teruko ; Hovy, Eduard ; Gangal, Varun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25713389573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Image enhancement</topic><toplevel>online_resources</toplevel><creatorcontrib>Feng, Steven Y</creatorcontrib><creatorcontrib>Lu, Kevin</creatorcontrib><creatorcontrib>Zhuofu Tao</creatorcontrib><creatorcontrib>Alikhani, Malihe</creatorcontrib><creatorcontrib>Mitamura, Teruko</creatorcontrib><creatorcontrib>Hovy, Eduard</creatorcontrib><creatorcontrib>Gangal, Varun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Steven Y</au><au>Lu, Kevin</au><au>Zhuofu Tao</au><au>Alikhani, Malihe</au><au>Mitamura, Teruko</au><au>Hovy, Eduard</au><au>Gangal, Varun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Retrieve, Caption, Generate: Visual Grounding for Enhancing Commonsense in Text Generation Models</atitle><jtitle>arXiv.org</jtitle><date>2022-03-25</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We investigate the use of multimodal information contained in images as an effective method for enhancing the commonsense of Transformer models for text generation. We perform experiments using BART and T5 on concept-to-text generation, specifically the task of generative commonsense reasoning, or CommonGen. We call our approach VisCTG: Visually Grounded Concept-to-Text Generation. VisCTG involves captioning images representing appropriate everyday scenarios, and using these captions to enrich and steer the generation process. Comprehensive evaluation and analysis demonstrate that VisCTG noticeably improves model performance while successfully addressing several issues of the baseline generations, including poor commonsense, fluency, and specificity.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2571338957 |
source | Free E- Journals |
subjects | Image enhancement |
title | Retrieve, Caption, Generate: Visual Grounding for Enhancing Commonsense in Text Generation Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A27%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Retrieve,%20Caption,%20Generate:%20Visual%20Grounding%20for%20Enhancing%20Commonsense%20in%20Text%20Generation%20Models&rft.jtitle=arXiv.org&rft.au=Feng,%20Steven%20Y&rft.date=2022-03-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2571338957%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2571338957&rft_id=info:pmid/&rfr_iscdi=true |