Solving Multi-Objective Two-Sided Assembly Line Balancing Problems by Harmony Search Algorithm Based on Pareto Entropy
Two-sided assembly lines are designed to produce large and complex products, where workers can perform on both sides at the same time. This paper establishes a mathematical model for the multi-objective two-sided assembly line balancing problems with additional constraints (MOATALBP). The model cons...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.121728-121742 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 121742 |
---|---|
container_issue | |
container_start_page | 121728 |
container_title | IEEE access |
container_volume | 9 |
creator | Zheng, Xiaojun Ning, Shiduo Sun, Hao Zhong, Jiang Tong, Xiaoying |
description | Two-sided assembly lines are designed to produce large and complex products, where workers can perform on both sides at the same time. This paper establishes a mathematical model for the multi-objective two-sided assembly line balancing problems with additional constraints (MOATALBP). The model considers both workers skills and the balance of the assembly line, aiming to maximize efficiency and minimize workers cost and smoothness index. A harmony search algorithm (HS) based on Pareto entropy (PE-MHS) is proposed to solve MOATALBP. The difference entropy of Pareto solutions is employed to adjust the algorithm parameters to enhance the optimization ability of PE-MHS. Moreover, a fine-tuning operation combining insertion and inverse sequence is utilized to avoid the algorithm from falling into local optima. Ultimately, non-dominated sorting ensures a set of well-distributed Pareto solutions. The experimental results of different problems indicate that the proposed algorithm can achieve better solutions than three classical algorithms (NSGAII, SPEA2 and HS) for the MOATALBP. |
doi_str_mv | 10.1109/ACCESS.2021.3108818 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2571222390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9524913</ieee_id><doaj_id>oai_doaj_org_article_6ee4a011e1974f728b1d55f3b148e2e6</doaj_id><sourcerecordid>2571222390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-3fa8a4f1071439791959eb9594ee36032002a28999a7bdbec6d6c5652e31d9763</originalsourceid><addsrcrecordid>eNpNUcFq4zAQNWULLW2_oBfBnp3VSJYtHbMh2xSytOD2LCR7nCrYVlZyUvz3ddaldA4zw-O9NwMvSe6BLgCo-rVcrdZluWCUwYIDlRLkRXLNIFcpFzz_8W2_Su5i3NOp5ASJ4jo5lb49uX5H_h7bwaVPdo_V4E5IXt59Wroaa7KMETvbjmTreiS_TWv66qx4Dt622EViR7IxofP9SEo0oXojy3bngxveuokeJwvfk2cTcPBk3Q_BH8bb5LIxbcS7z3mTvP5Zv6w26fbp4XG13KZVRuWQ8sZIkzVAC8i4KhQoodBOLUPkOeWMUmaYVEqZwtYWq7zOK5ELhhxqVeT8JnmcfWtv9voQXGfCqL1x-j_gw06bMLiqRZ0jZoYCIKgiawomLdRCNNxCJpHh2evn7HUI_t8R46D3_hj66X3NRAGMMa7oxOIzqwo-xoDN11Wg-pyXnvPS57z0Z16T6n5WOUT8UijBMgWcfwCiZ5Au</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571222390</pqid></control><display><type>article</type><title>Solving Multi-Objective Two-Sided Assembly Line Balancing Problems by Harmony Search Algorithm Based on Pareto Entropy</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zheng, Xiaojun ; Ning, Shiduo ; Sun, Hao ; Zhong, Jiang ; Tong, Xiaoying</creator><creatorcontrib>Zheng, Xiaojun ; Ning, Shiduo ; Sun, Hao ; Zhong, Jiang ; Tong, Xiaoying</creatorcontrib><description>Two-sided assembly lines are designed to produce large and complex products, where workers can perform on both sides at the same time. This paper establishes a mathematical model for the multi-objective two-sided assembly line balancing problems with additional constraints (MOATALBP). The model considers both workers skills and the balance of the assembly line, aiming to maximize efficiency and minimize workers cost and smoothness index. A harmony search algorithm (HS) based on Pareto entropy (PE-MHS) is proposed to solve MOATALBP. The difference entropy of Pareto solutions is employed to adjust the algorithm parameters to enhance the optimization ability of PE-MHS. Moreover, a fine-tuning operation combining insertion and inverse sequence is utilized to avoid the algorithm from falling into local optima. Ultimately, non-dominated sorting ensures a set of well-distributed Pareto solutions. The experimental results of different problems indicate that the proposed algorithm can achieve better solutions than three classical algorithms (NSGAII, SPEA2 and HS) for the MOATALBP.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3108818</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Assembly lines ; Balancing ; Constraint modelling ; Entropy ; Genetic algorithms ; Harmony search algorithm ; Indexes ; Mathematical model ; multi-objective optimization ; Optimization ; Pareto entropy ; Search algorithms ; Search problems ; Smoothness ; Sorting ; Sorting algorithms ; Task analysis ; two-sided assembly line balancing</subject><ispartof>IEEE access, 2021, Vol.9, p.121728-121742</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-3fa8a4f1071439791959eb9594ee36032002a28999a7bdbec6d6c5652e31d9763</citedby><cites>FETCH-LOGICAL-c408t-3fa8a4f1071439791959eb9594ee36032002a28999a7bdbec6d6c5652e31d9763</cites><orcidid>0000-0003-4445-6256 ; 0000-0001-5888-2825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9524913$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Zheng, Xiaojun</creatorcontrib><creatorcontrib>Ning, Shiduo</creatorcontrib><creatorcontrib>Sun, Hao</creatorcontrib><creatorcontrib>Zhong, Jiang</creatorcontrib><creatorcontrib>Tong, Xiaoying</creatorcontrib><title>Solving Multi-Objective Two-Sided Assembly Line Balancing Problems by Harmony Search Algorithm Based on Pareto Entropy</title><title>IEEE access</title><addtitle>Access</addtitle><description>Two-sided assembly lines are designed to produce large and complex products, where workers can perform on both sides at the same time. This paper establishes a mathematical model for the multi-objective two-sided assembly line balancing problems with additional constraints (MOATALBP). The model considers both workers skills and the balance of the assembly line, aiming to maximize efficiency and minimize workers cost and smoothness index. A harmony search algorithm (HS) based on Pareto entropy (PE-MHS) is proposed to solve MOATALBP. The difference entropy of Pareto solutions is employed to adjust the algorithm parameters to enhance the optimization ability of PE-MHS. Moreover, a fine-tuning operation combining insertion and inverse sequence is utilized to avoid the algorithm from falling into local optima. Ultimately, non-dominated sorting ensures a set of well-distributed Pareto solutions. The experimental results of different problems indicate that the proposed algorithm can achieve better solutions than three classical algorithms (NSGAII, SPEA2 and HS) for the MOATALBP.</description><subject>Algorithms</subject><subject>Assembly lines</subject><subject>Balancing</subject><subject>Constraint modelling</subject><subject>Entropy</subject><subject>Genetic algorithms</subject><subject>Harmony search algorithm</subject><subject>Indexes</subject><subject>Mathematical model</subject><subject>multi-objective optimization</subject><subject>Optimization</subject><subject>Pareto entropy</subject><subject>Search algorithms</subject><subject>Search problems</subject><subject>Smoothness</subject><subject>Sorting</subject><subject>Sorting algorithms</subject><subject>Task analysis</subject><subject>two-sided assembly line balancing</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFq4zAQNWULLW2_oBfBnp3VSJYtHbMh2xSytOD2LCR7nCrYVlZyUvz3ddaldA4zw-O9NwMvSe6BLgCo-rVcrdZluWCUwYIDlRLkRXLNIFcpFzz_8W2_Su5i3NOp5ASJ4jo5lb49uX5H_h7bwaVPdo_V4E5IXt59Wroaa7KMETvbjmTreiS_TWv66qx4Dt622EViR7IxofP9SEo0oXojy3bngxveuokeJwvfk2cTcPBk3Q_BH8bb5LIxbcS7z3mTvP5Zv6w26fbp4XG13KZVRuWQ8sZIkzVAC8i4KhQoodBOLUPkOeWMUmaYVEqZwtYWq7zOK5ELhhxqVeT8JnmcfWtv9voQXGfCqL1x-j_gw06bMLiqRZ0jZoYCIKgiawomLdRCNNxCJpHh2evn7HUI_t8R46D3_hj66X3NRAGMMa7oxOIzqwo-xoDN11Wg-pyXnvPS57z0Z16T6n5WOUT8UijBMgWcfwCiZ5Au</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zheng, Xiaojun</creator><creator>Ning, Shiduo</creator><creator>Sun, Hao</creator><creator>Zhong, Jiang</creator><creator>Tong, Xiaoying</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4445-6256</orcidid><orcidid>https://orcid.org/0000-0001-5888-2825</orcidid></search><sort><creationdate>2021</creationdate><title>Solving Multi-Objective Two-Sided Assembly Line Balancing Problems by Harmony Search Algorithm Based on Pareto Entropy</title><author>Zheng, Xiaojun ; Ning, Shiduo ; Sun, Hao ; Zhong, Jiang ; Tong, Xiaoying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-3fa8a4f1071439791959eb9594ee36032002a28999a7bdbec6d6c5652e31d9763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Assembly lines</topic><topic>Balancing</topic><topic>Constraint modelling</topic><topic>Entropy</topic><topic>Genetic algorithms</topic><topic>Harmony search algorithm</topic><topic>Indexes</topic><topic>Mathematical model</topic><topic>multi-objective optimization</topic><topic>Optimization</topic><topic>Pareto entropy</topic><topic>Search algorithms</topic><topic>Search problems</topic><topic>Smoothness</topic><topic>Sorting</topic><topic>Sorting algorithms</topic><topic>Task analysis</topic><topic>two-sided assembly line balancing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Xiaojun</creatorcontrib><creatorcontrib>Ning, Shiduo</creatorcontrib><creatorcontrib>Sun, Hao</creatorcontrib><creatorcontrib>Zhong, Jiang</creatorcontrib><creatorcontrib>Tong, Xiaoying</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Xiaojun</au><au>Ning, Shiduo</au><au>Sun, Hao</au><au>Zhong, Jiang</au><au>Tong, Xiaoying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving Multi-Objective Two-Sided Assembly Line Balancing Problems by Harmony Search Algorithm Based on Pareto Entropy</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>121728</spage><epage>121742</epage><pages>121728-121742</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Two-sided assembly lines are designed to produce large and complex products, where workers can perform on both sides at the same time. This paper establishes a mathematical model for the multi-objective two-sided assembly line balancing problems with additional constraints (MOATALBP). The model considers both workers skills and the balance of the assembly line, aiming to maximize efficiency and minimize workers cost and smoothness index. A harmony search algorithm (HS) based on Pareto entropy (PE-MHS) is proposed to solve MOATALBP. The difference entropy of Pareto solutions is employed to adjust the algorithm parameters to enhance the optimization ability of PE-MHS. Moreover, a fine-tuning operation combining insertion and inverse sequence is utilized to avoid the algorithm from falling into local optima. Ultimately, non-dominated sorting ensures a set of well-distributed Pareto solutions. The experimental results of different problems indicate that the proposed algorithm can achieve better solutions than three classical algorithms (NSGAII, SPEA2 and HS) for the MOATALBP.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3108818</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4445-6256</orcidid><orcidid>https://orcid.org/0000-0001-5888-2825</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.121728-121742 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2571222390 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Assembly lines Balancing Constraint modelling Entropy Genetic algorithms Harmony search algorithm Indexes Mathematical model multi-objective optimization Optimization Pareto entropy Search algorithms Search problems Smoothness Sorting Sorting algorithms Task analysis two-sided assembly line balancing |
title | Solving Multi-Objective Two-Sided Assembly Line Balancing Problems by Harmony Search Algorithm Based on Pareto Entropy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A02%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20Multi-Objective%20Two-Sided%20Assembly%20Line%20Balancing%20Problems%20by%20Harmony%20Search%20Algorithm%20Based%20on%20Pareto%20Entropy&rft.jtitle=IEEE%20access&rft.au=Zheng,%20Xiaojun&rft.date=2021&rft.volume=9&rft.spage=121728&rft.epage=121742&rft.pages=121728-121742&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3108818&rft_dat=%3Cproquest_doaj_%3E2571222390%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2571222390&rft_id=info:pmid/&rft_ieee_id=9524913&rft_doaj_id=oai_doaj_org_article_6ee4a011e1974f728b1d55f3b148e2e6&rfr_iscdi=true |