Solving Multi-Objective Two-Sided Assembly Line Balancing Problems by Harmony Search Algorithm Based on Pareto Entropy

Two-sided assembly lines are designed to produce large and complex products, where workers can perform on both sides at the same time. This paper establishes a mathematical model for the multi-objective two-sided assembly line balancing problems with additional constraints (MOATALBP). The model cons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.121728-121742
Hauptverfasser: Zheng, Xiaojun, Ning, Shiduo, Sun, Hao, Zhong, Jiang, Tong, Xiaoying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121742
container_issue
container_start_page 121728
container_title IEEE access
container_volume 9
creator Zheng, Xiaojun
Ning, Shiduo
Sun, Hao
Zhong, Jiang
Tong, Xiaoying
description Two-sided assembly lines are designed to produce large and complex products, where workers can perform on both sides at the same time. This paper establishes a mathematical model for the multi-objective two-sided assembly line balancing problems with additional constraints (MOATALBP). The model considers both workers skills and the balance of the assembly line, aiming to maximize efficiency and minimize workers cost and smoothness index. A harmony search algorithm (HS) based on Pareto entropy (PE-MHS) is proposed to solve MOATALBP. The difference entropy of Pareto solutions is employed to adjust the algorithm parameters to enhance the optimization ability of PE-MHS. Moreover, a fine-tuning operation combining insertion and inverse sequence is utilized to avoid the algorithm from falling into local optima. Ultimately, non-dominated sorting ensures a set of well-distributed Pareto solutions. The experimental results of different problems indicate that the proposed algorithm can achieve better solutions than three classical algorithms (NSGAII, SPEA2 and HS) for the MOATALBP.
doi_str_mv 10.1109/ACCESS.2021.3108818
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2571222390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9524913</ieee_id><doaj_id>oai_doaj_org_article_6ee4a011e1974f728b1d55f3b148e2e6</doaj_id><sourcerecordid>2571222390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-3fa8a4f1071439791959eb9594ee36032002a28999a7bdbec6d6c5652e31d9763</originalsourceid><addsrcrecordid>eNpNUcFq4zAQNWULLW2_oBfBnp3VSJYtHbMh2xSytOD2LCR7nCrYVlZyUvz3ddaldA4zw-O9NwMvSe6BLgCo-rVcrdZluWCUwYIDlRLkRXLNIFcpFzz_8W2_Su5i3NOp5ASJ4jo5lb49uX5H_h7bwaVPdo_V4E5IXt59Wroaa7KMETvbjmTreiS_TWv66qx4Dt622EViR7IxofP9SEo0oXojy3bngxveuokeJwvfk2cTcPBk3Q_BH8bb5LIxbcS7z3mTvP5Zv6w26fbp4XG13KZVRuWQ8sZIkzVAC8i4KhQoodBOLUPkOeWMUmaYVEqZwtYWq7zOK5ELhhxqVeT8JnmcfWtv9voQXGfCqL1x-j_gw06bMLiqRZ0jZoYCIKgiawomLdRCNNxCJpHh2evn7HUI_t8R46D3_hj66X3NRAGMMa7oxOIzqwo-xoDN11Wg-pyXnvPS57z0Z16T6n5WOUT8UijBMgWcfwCiZ5Au</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571222390</pqid></control><display><type>article</type><title>Solving Multi-Objective Two-Sided Assembly Line Balancing Problems by Harmony Search Algorithm Based on Pareto Entropy</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zheng, Xiaojun ; Ning, Shiduo ; Sun, Hao ; Zhong, Jiang ; Tong, Xiaoying</creator><creatorcontrib>Zheng, Xiaojun ; Ning, Shiduo ; Sun, Hao ; Zhong, Jiang ; Tong, Xiaoying</creatorcontrib><description>Two-sided assembly lines are designed to produce large and complex products, where workers can perform on both sides at the same time. This paper establishes a mathematical model for the multi-objective two-sided assembly line balancing problems with additional constraints (MOATALBP). The model considers both workers skills and the balance of the assembly line, aiming to maximize efficiency and minimize workers cost and smoothness index. A harmony search algorithm (HS) based on Pareto entropy (PE-MHS) is proposed to solve MOATALBP. The difference entropy of Pareto solutions is employed to adjust the algorithm parameters to enhance the optimization ability of PE-MHS. Moreover, a fine-tuning operation combining insertion and inverse sequence is utilized to avoid the algorithm from falling into local optima. Ultimately, non-dominated sorting ensures a set of well-distributed Pareto solutions. The experimental results of different problems indicate that the proposed algorithm can achieve better solutions than three classical algorithms (NSGAII, SPEA2 and HS) for the MOATALBP.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3108818</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Assembly lines ; Balancing ; Constraint modelling ; Entropy ; Genetic algorithms ; Harmony search algorithm ; Indexes ; Mathematical model ; multi-objective optimization ; Optimization ; Pareto entropy ; Search algorithms ; Search problems ; Smoothness ; Sorting ; Sorting algorithms ; Task analysis ; two-sided assembly line balancing</subject><ispartof>IEEE access, 2021, Vol.9, p.121728-121742</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-3fa8a4f1071439791959eb9594ee36032002a28999a7bdbec6d6c5652e31d9763</citedby><cites>FETCH-LOGICAL-c408t-3fa8a4f1071439791959eb9594ee36032002a28999a7bdbec6d6c5652e31d9763</cites><orcidid>0000-0003-4445-6256 ; 0000-0001-5888-2825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9524913$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Zheng, Xiaojun</creatorcontrib><creatorcontrib>Ning, Shiduo</creatorcontrib><creatorcontrib>Sun, Hao</creatorcontrib><creatorcontrib>Zhong, Jiang</creatorcontrib><creatorcontrib>Tong, Xiaoying</creatorcontrib><title>Solving Multi-Objective Two-Sided Assembly Line Balancing Problems by Harmony Search Algorithm Based on Pareto Entropy</title><title>IEEE access</title><addtitle>Access</addtitle><description>Two-sided assembly lines are designed to produce large and complex products, where workers can perform on both sides at the same time. This paper establishes a mathematical model for the multi-objective two-sided assembly line balancing problems with additional constraints (MOATALBP). The model considers both workers skills and the balance of the assembly line, aiming to maximize efficiency and minimize workers cost and smoothness index. A harmony search algorithm (HS) based on Pareto entropy (PE-MHS) is proposed to solve MOATALBP. The difference entropy of Pareto solutions is employed to adjust the algorithm parameters to enhance the optimization ability of PE-MHS. Moreover, a fine-tuning operation combining insertion and inverse sequence is utilized to avoid the algorithm from falling into local optima. Ultimately, non-dominated sorting ensures a set of well-distributed Pareto solutions. The experimental results of different problems indicate that the proposed algorithm can achieve better solutions than three classical algorithms (NSGAII, SPEA2 and HS) for the MOATALBP.</description><subject>Algorithms</subject><subject>Assembly lines</subject><subject>Balancing</subject><subject>Constraint modelling</subject><subject>Entropy</subject><subject>Genetic algorithms</subject><subject>Harmony search algorithm</subject><subject>Indexes</subject><subject>Mathematical model</subject><subject>multi-objective optimization</subject><subject>Optimization</subject><subject>Pareto entropy</subject><subject>Search algorithms</subject><subject>Search problems</subject><subject>Smoothness</subject><subject>Sorting</subject><subject>Sorting algorithms</subject><subject>Task analysis</subject><subject>two-sided assembly line balancing</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFq4zAQNWULLW2_oBfBnp3VSJYtHbMh2xSytOD2LCR7nCrYVlZyUvz3ddaldA4zw-O9NwMvSe6BLgCo-rVcrdZluWCUwYIDlRLkRXLNIFcpFzz_8W2_Su5i3NOp5ASJ4jo5lb49uX5H_h7bwaVPdo_V4E5IXt59Wroaa7KMETvbjmTreiS_TWv66qx4Dt622EViR7IxofP9SEo0oXojy3bngxveuokeJwvfk2cTcPBk3Q_BH8bb5LIxbcS7z3mTvP5Zv6w26fbp4XG13KZVRuWQ8sZIkzVAC8i4KhQoodBOLUPkOeWMUmaYVEqZwtYWq7zOK5ELhhxqVeT8JnmcfWtv9voQXGfCqL1x-j_gw06bMLiqRZ0jZoYCIKgiawomLdRCNNxCJpHh2evn7HUI_t8R46D3_hj66X3NRAGMMa7oxOIzqwo-xoDN11Wg-pyXnvPS57z0Z16T6n5WOUT8UijBMgWcfwCiZ5Au</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zheng, Xiaojun</creator><creator>Ning, Shiduo</creator><creator>Sun, Hao</creator><creator>Zhong, Jiang</creator><creator>Tong, Xiaoying</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4445-6256</orcidid><orcidid>https://orcid.org/0000-0001-5888-2825</orcidid></search><sort><creationdate>2021</creationdate><title>Solving Multi-Objective Two-Sided Assembly Line Balancing Problems by Harmony Search Algorithm Based on Pareto Entropy</title><author>Zheng, Xiaojun ; Ning, Shiduo ; Sun, Hao ; Zhong, Jiang ; Tong, Xiaoying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-3fa8a4f1071439791959eb9594ee36032002a28999a7bdbec6d6c5652e31d9763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Assembly lines</topic><topic>Balancing</topic><topic>Constraint modelling</topic><topic>Entropy</topic><topic>Genetic algorithms</topic><topic>Harmony search algorithm</topic><topic>Indexes</topic><topic>Mathematical model</topic><topic>multi-objective optimization</topic><topic>Optimization</topic><topic>Pareto entropy</topic><topic>Search algorithms</topic><topic>Search problems</topic><topic>Smoothness</topic><topic>Sorting</topic><topic>Sorting algorithms</topic><topic>Task analysis</topic><topic>two-sided assembly line balancing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Xiaojun</creatorcontrib><creatorcontrib>Ning, Shiduo</creatorcontrib><creatorcontrib>Sun, Hao</creatorcontrib><creatorcontrib>Zhong, Jiang</creatorcontrib><creatorcontrib>Tong, Xiaoying</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Xiaojun</au><au>Ning, Shiduo</au><au>Sun, Hao</au><au>Zhong, Jiang</au><au>Tong, Xiaoying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving Multi-Objective Two-Sided Assembly Line Balancing Problems by Harmony Search Algorithm Based on Pareto Entropy</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>121728</spage><epage>121742</epage><pages>121728-121742</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Two-sided assembly lines are designed to produce large and complex products, where workers can perform on both sides at the same time. This paper establishes a mathematical model for the multi-objective two-sided assembly line balancing problems with additional constraints (MOATALBP). The model considers both workers skills and the balance of the assembly line, aiming to maximize efficiency and minimize workers cost and smoothness index. A harmony search algorithm (HS) based on Pareto entropy (PE-MHS) is proposed to solve MOATALBP. The difference entropy of Pareto solutions is employed to adjust the algorithm parameters to enhance the optimization ability of PE-MHS. Moreover, a fine-tuning operation combining insertion and inverse sequence is utilized to avoid the algorithm from falling into local optima. Ultimately, non-dominated sorting ensures a set of well-distributed Pareto solutions. The experimental results of different problems indicate that the proposed algorithm can achieve better solutions than three classical algorithms (NSGAII, SPEA2 and HS) for the MOATALBP.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3108818</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4445-6256</orcidid><orcidid>https://orcid.org/0000-0001-5888-2825</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.121728-121742
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2571222390
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Assembly lines
Balancing
Constraint modelling
Entropy
Genetic algorithms
Harmony search algorithm
Indexes
Mathematical model
multi-objective optimization
Optimization
Pareto entropy
Search algorithms
Search problems
Smoothness
Sorting
Sorting algorithms
Task analysis
two-sided assembly line balancing
title Solving Multi-Objective Two-Sided Assembly Line Balancing Problems by Harmony Search Algorithm Based on Pareto Entropy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A02%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20Multi-Objective%20Two-Sided%20Assembly%20Line%20Balancing%20Problems%20by%20Harmony%20Search%20Algorithm%20Based%20on%20Pareto%20Entropy&rft.jtitle=IEEE%20access&rft.au=Zheng,%20Xiaojun&rft.date=2021&rft.volume=9&rft.spage=121728&rft.epage=121742&rft.pages=121728-121742&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3108818&rft_dat=%3Cproquest_doaj_%3E2571222390%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2571222390&rft_id=info:pmid/&rft_ieee_id=9524913&rft_doaj_id=oai_doaj_org_article_6ee4a011e1974f728b1d55f3b148e2e6&rfr_iscdi=true