A Data-Driven Biophysical Computational Model of Parkinson's Disease Based on Marmoset Monkeys

In this work we propose a new biophysical computational model of brain regions relevant to Parkinson's Disease (PD) based on local field potential data collected from the brain of marmoset monkeys. PD is a neurodegenerative disorder, linked to the death of dopaminergic neurons at the substantia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.122548-122567
Hauptverfasser: Ranieri, Caetano M., Pimentel, Jhielson M., Romano, Marcelo R., Elias, Leonardo A., Romero, Roseli A. F., Lones, Michael A., Araujo, Mariana F. P., Vargas, Patricia A., Moioli, Renan C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 122567
container_issue
container_start_page 122548
container_title IEEE access
container_volume 9
creator Ranieri, Caetano M.
Pimentel, Jhielson M.
Romano, Marcelo R.
Elias, Leonardo A.
Romero, Roseli A. F.
Lones, Michael A.
Araujo, Mariana F. P.
Vargas, Patricia A.
Moioli, Renan C.
description In this work we propose a new biophysical computational model of brain regions relevant to Parkinson's Disease (PD) based on local field potential data collected from the brain of marmoset monkeys. PD is a neurodegenerative disorder, linked to the death of dopaminergic neurons at the substantia nigra pars compacta, which affects the normal dynamics of the basal ganglia-thalamus-cortex (BG-T-C) neuronal circuit of the brain. Although there are multiple mechanisms underlying the disease, a complete description of those mechanisms and molecular pathogenesis are still missing, and there is still no cure. To address this gap, computational models that resemble neurobiological aspects found in animal models have been proposed. In our model, we performed a data-driven approach in which a set of biologically constrained parameters is optimised using differential evolution. Evolved models successfully resembled spectral signatures of local field potentials and single-neuron mean firing rates from healthy and parkinsonian marmoset brain data. This is the first computational model of PD based on simultaneous electrophysiological recordings from seven brain regions of Marmoset monkeys. Results indicate that the proposed model may facilitate the investigation of the mechanisms of PD and eventually support the development of new therapies. The DE method could also be applied to other computational neuroscience problems in which biological data is used to fit multi-scale models of brain circuits.
doi_str_mv 10.1109/ACCESS.2021.3108682
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2571220214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9524925</ieee_id><doaj_id>oai_doaj_org_article_b1a2833cd6ba44848c98747c5e51c1f5</doaj_id><sourcerecordid>2571220214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-244409fa0f033b37c3c92dbe376bf59b63643a4157405827afa486aad95df1853</originalsourceid><addsrcrecordid>eNpNUclOwzAQjRBIIOALerHEgVOK18Q-timbBAKpcMWaODa4S1zsFKl_T0oQYg6z6b030rwsGxE8JgSrq0lVXc_nY4opGTOCZSHpQXZCSaFyJlhx-K8_zs5TWuA-ZL8S5Un2NkEz6CCfRf9lWzT1YfOxS97AClVhvdl20PnQ9tNjaOwKBYeeIS59m0J7mdDMJwvJommfGhRa9AhxHZLteni7tLt0lh05WCV7_ltPs9eb65fqLn94ur2vJg-54Vh2OeWcY-UAO8xYzUrDjKJNbVlZ1E6oumAFZ8CJKDkWkpbggMsCoFGicUQKdprdD7pNgIXeRL-GuNMBvP5ZhPiuIXberKyuCVDJmGmKGjiXXBolS14aYQUxxO21LgatTQyfW5s6vQjb2P8gaSpKQveP5j2KDSgTQ0rRur-rBOu9L3rwRe_h-teXnjUaWN5a-8dQgnJFBfsGSpGHgA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571220214</pqid></control><display><type>article</type><title>A Data-Driven Biophysical Computational Model of Parkinson's Disease Based on Marmoset Monkeys</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ranieri, Caetano M. ; Pimentel, Jhielson M. ; Romano, Marcelo R. ; Elias, Leonardo A. ; Romero, Roseli A. F. ; Lones, Michael A. ; Araujo, Mariana F. P. ; Vargas, Patricia A. ; Moioli, Renan C.</creator><creatorcontrib>Ranieri, Caetano M. ; Pimentel, Jhielson M. ; Romano, Marcelo R. ; Elias, Leonardo A. ; Romero, Roseli A. F. ; Lones, Michael A. ; Araujo, Mariana F. P. ; Vargas, Patricia A. ; Moioli, Renan C.</creatorcontrib><description>In this work we propose a new biophysical computational model of brain regions relevant to Parkinson's Disease (PD) based on local field potential data collected from the brain of marmoset monkeys. PD is a neurodegenerative disorder, linked to the death of dopaminergic neurons at the substantia nigra pars compacta, which affects the normal dynamics of the basal ganglia-thalamus-cortex (BG-T-C) neuronal circuit of the brain. Although there are multiple mechanisms underlying the disease, a complete description of those mechanisms and molecular pathogenesis are still missing, and there is still no cure. To address this gap, computational models that resemble neurobiological aspects found in animal models have been proposed. In our model, we performed a data-driven approach in which a set of biologically constrained parameters is optimised using differential evolution. Evolved models successfully resembled spectral signatures of local field potentials and single-neuron mean firing rates from healthy and parkinsonian marmoset brain data. This is the first computational model of PD based on simultaneous electrophysiological recordings from seven brain regions of Marmoset monkeys. Results indicate that the proposed model may facilitate the investigation of the mechanisms of PD and eventually support the development of new therapies. The DE method could also be applied to other computational neuroscience problems in which biological data is used to fit multi-scale models of brain circuits.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3108682</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>6-OHDA lesioned marmoset model ; Basal ganglia ; Biological system modeling ; Brain ; Brain modeling ; brain modelling ; Circuits ; Computational modeling ; computational modelling ; Diseases ; Evolutionary computation ; Ganglia ; Handheld computers ; Integrated circuit modeling ; Mathematical model ; Monkeys ; neural engineering ; Parkinson's disease ; Pathogenesis ; Scale models ; Spectral signatures ; Thalamus</subject><ispartof>IEEE access, 2021, Vol.9, p.122548-122567</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-244409fa0f033b37c3c92dbe376bf59b63643a4157405827afa486aad95df1853</citedby><cites>FETCH-LOGICAL-c408t-244409fa0f033b37c3c92dbe376bf59b63643a4157405827afa486aad95df1853</cites><orcidid>0000-0001-5680-9085 ; 0000-0003-4488-3063 ; 0000-0001-9366-2780 ; 0000-0002-2745-9896 ; 0000-0002-4825-8508 ; 0000-0002-3272-2521 ; 0000-0001-6036-8358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9524925$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Ranieri, Caetano M.</creatorcontrib><creatorcontrib>Pimentel, Jhielson M.</creatorcontrib><creatorcontrib>Romano, Marcelo R.</creatorcontrib><creatorcontrib>Elias, Leonardo A.</creatorcontrib><creatorcontrib>Romero, Roseli A. F.</creatorcontrib><creatorcontrib>Lones, Michael A.</creatorcontrib><creatorcontrib>Araujo, Mariana F. P.</creatorcontrib><creatorcontrib>Vargas, Patricia A.</creatorcontrib><creatorcontrib>Moioli, Renan C.</creatorcontrib><title>A Data-Driven Biophysical Computational Model of Parkinson's Disease Based on Marmoset Monkeys</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this work we propose a new biophysical computational model of brain regions relevant to Parkinson's Disease (PD) based on local field potential data collected from the brain of marmoset monkeys. PD is a neurodegenerative disorder, linked to the death of dopaminergic neurons at the substantia nigra pars compacta, which affects the normal dynamics of the basal ganglia-thalamus-cortex (BG-T-C) neuronal circuit of the brain. Although there are multiple mechanisms underlying the disease, a complete description of those mechanisms and molecular pathogenesis are still missing, and there is still no cure. To address this gap, computational models that resemble neurobiological aspects found in animal models have been proposed. In our model, we performed a data-driven approach in which a set of biologically constrained parameters is optimised using differential evolution. Evolved models successfully resembled spectral signatures of local field potentials and single-neuron mean firing rates from healthy and parkinsonian marmoset brain data. This is the first computational model of PD based on simultaneous electrophysiological recordings from seven brain regions of Marmoset monkeys. Results indicate that the proposed model may facilitate the investigation of the mechanisms of PD and eventually support the development of new therapies. The DE method could also be applied to other computational neuroscience problems in which biological data is used to fit multi-scale models of brain circuits.</description><subject>6-OHDA lesioned marmoset model</subject><subject>Basal ganglia</subject><subject>Biological system modeling</subject><subject>Brain</subject><subject>Brain modeling</subject><subject>brain modelling</subject><subject>Circuits</subject><subject>Computational modeling</subject><subject>computational modelling</subject><subject>Diseases</subject><subject>Evolutionary computation</subject><subject>Ganglia</subject><subject>Handheld computers</subject><subject>Integrated circuit modeling</subject><subject>Mathematical model</subject><subject>Monkeys</subject><subject>neural engineering</subject><subject>Parkinson's disease</subject><subject>Pathogenesis</subject><subject>Scale models</subject><subject>Spectral signatures</subject><subject>Thalamus</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUclOwzAQjRBIIOALerHEgVOK18Q-timbBAKpcMWaODa4S1zsFKl_T0oQYg6z6b030rwsGxE8JgSrq0lVXc_nY4opGTOCZSHpQXZCSaFyJlhx-K8_zs5TWuA-ZL8S5Un2NkEz6CCfRf9lWzT1YfOxS97AClVhvdl20PnQ9tNjaOwKBYeeIS59m0J7mdDMJwvJommfGhRa9AhxHZLteni7tLt0lh05WCV7_ltPs9eb65fqLn94ur2vJg-54Vh2OeWcY-UAO8xYzUrDjKJNbVlZ1E6oumAFZ8CJKDkWkpbggMsCoFGicUQKdprdD7pNgIXeRL-GuNMBvP5ZhPiuIXberKyuCVDJmGmKGjiXXBolS14aYQUxxO21LgatTQyfW5s6vQjb2P8gaSpKQveP5j2KDSgTQ0rRur-rBOu9L3rwRe_h-teXnjUaWN5a-8dQgnJFBfsGSpGHgA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ranieri, Caetano M.</creator><creator>Pimentel, Jhielson M.</creator><creator>Romano, Marcelo R.</creator><creator>Elias, Leonardo A.</creator><creator>Romero, Roseli A. F.</creator><creator>Lones, Michael A.</creator><creator>Araujo, Mariana F. P.</creator><creator>Vargas, Patricia A.</creator><creator>Moioli, Renan C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5680-9085</orcidid><orcidid>https://orcid.org/0000-0003-4488-3063</orcidid><orcidid>https://orcid.org/0000-0001-9366-2780</orcidid><orcidid>https://orcid.org/0000-0002-2745-9896</orcidid><orcidid>https://orcid.org/0000-0002-4825-8508</orcidid><orcidid>https://orcid.org/0000-0002-3272-2521</orcidid><orcidid>https://orcid.org/0000-0001-6036-8358</orcidid></search><sort><creationdate>2021</creationdate><title>A Data-Driven Biophysical Computational Model of Parkinson's Disease Based on Marmoset Monkeys</title><author>Ranieri, Caetano M. ; Pimentel, Jhielson M. ; Romano, Marcelo R. ; Elias, Leonardo A. ; Romero, Roseli A. F. ; Lones, Michael A. ; Araujo, Mariana F. P. ; Vargas, Patricia A. ; Moioli, Renan C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-244409fa0f033b37c3c92dbe376bf59b63643a4157405827afa486aad95df1853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>6-OHDA lesioned marmoset model</topic><topic>Basal ganglia</topic><topic>Biological system modeling</topic><topic>Brain</topic><topic>Brain modeling</topic><topic>brain modelling</topic><topic>Circuits</topic><topic>Computational modeling</topic><topic>computational modelling</topic><topic>Diseases</topic><topic>Evolutionary computation</topic><topic>Ganglia</topic><topic>Handheld computers</topic><topic>Integrated circuit modeling</topic><topic>Mathematical model</topic><topic>Monkeys</topic><topic>neural engineering</topic><topic>Parkinson's disease</topic><topic>Pathogenesis</topic><topic>Scale models</topic><topic>Spectral signatures</topic><topic>Thalamus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranieri, Caetano M.</creatorcontrib><creatorcontrib>Pimentel, Jhielson M.</creatorcontrib><creatorcontrib>Romano, Marcelo R.</creatorcontrib><creatorcontrib>Elias, Leonardo A.</creatorcontrib><creatorcontrib>Romero, Roseli A. F.</creatorcontrib><creatorcontrib>Lones, Michael A.</creatorcontrib><creatorcontrib>Araujo, Mariana F. P.</creatorcontrib><creatorcontrib>Vargas, Patricia A.</creatorcontrib><creatorcontrib>Moioli, Renan C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranieri, Caetano M.</au><au>Pimentel, Jhielson M.</au><au>Romano, Marcelo R.</au><au>Elias, Leonardo A.</au><au>Romero, Roseli A. F.</au><au>Lones, Michael A.</au><au>Araujo, Mariana F. P.</au><au>Vargas, Patricia A.</au><au>Moioli, Renan C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Data-Driven Biophysical Computational Model of Parkinson's Disease Based on Marmoset Monkeys</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>122548</spage><epage>122567</epage><pages>122548-122567</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this work we propose a new biophysical computational model of brain regions relevant to Parkinson's Disease (PD) based on local field potential data collected from the brain of marmoset monkeys. PD is a neurodegenerative disorder, linked to the death of dopaminergic neurons at the substantia nigra pars compacta, which affects the normal dynamics of the basal ganglia-thalamus-cortex (BG-T-C) neuronal circuit of the brain. Although there are multiple mechanisms underlying the disease, a complete description of those mechanisms and molecular pathogenesis are still missing, and there is still no cure. To address this gap, computational models that resemble neurobiological aspects found in animal models have been proposed. In our model, we performed a data-driven approach in which a set of biologically constrained parameters is optimised using differential evolution. Evolved models successfully resembled spectral signatures of local field potentials and single-neuron mean firing rates from healthy and parkinsonian marmoset brain data. This is the first computational model of PD based on simultaneous electrophysiological recordings from seven brain regions of Marmoset monkeys. Results indicate that the proposed model may facilitate the investigation of the mechanisms of PD and eventually support the development of new therapies. The DE method could also be applied to other computational neuroscience problems in which biological data is used to fit multi-scale models of brain circuits.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3108682</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-5680-9085</orcidid><orcidid>https://orcid.org/0000-0003-4488-3063</orcidid><orcidid>https://orcid.org/0000-0001-9366-2780</orcidid><orcidid>https://orcid.org/0000-0002-2745-9896</orcidid><orcidid>https://orcid.org/0000-0002-4825-8508</orcidid><orcidid>https://orcid.org/0000-0002-3272-2521</orcidid><orcidid>https://orcid.org/0000-0001-6036-8358</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.122548-122567
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2571220214
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 6-OHDA lesioned marmoset model
Basal ganglia
Biological system modeling
Brain
Brain modeling
brain modelling
Circuits
Computational modeling
computational modelling
Diseases
Evolutionary computation
Ganglia
Handheld computers
Integrated circuit modeling
Mathematical model
Monkeys
neural engineering
Parkinson's disease
Pathogenesis
Scale models
Spectral signatures
Thalamus
title A Data-Driven Biophysical Computational Model of Parkinson's Disease Based on Marmoset Monkeys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Data-Driven%20Biophysical%20Computational%20Model%20of%20Parkinson's%20Disease%20Based%20on%20Marmoset%20Monkeys&rft.jtitle=IEEE%20access&rft.au=Ranieri,%20Caetano%20M.&rft.date=2021&rft.volume=9&rft.spage=122548&rft.epage=122567&rft.pages=122548-122567&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3108682&rft_dat=%3Cproquest_doaj_%3E2571220214%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2571220214&rft_id=info:pmid/&rft_ieee_id=9524925&rft_doaj_id=oai_doaj_org_article_b1a2833cd6ba44848c98747c5e51c1f5&rfr_iscdi=true