LED Landscape Lighting Equipment Fault Diagnosis Research
Aiming at the fault diagnosis characteristics of LED landscape lighting equipment, a class of genetic algorithm improved particle swarm optimization optimized wavelet neural network model is constructed. This fusion algorithm introduces the idea of cross factors and inertia weights in the genetic al...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2020-10, Vol.1650 (3), p.32142 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 32142 |
container_title | Journal of physics. Conference series |
container_volume | 1650 |
creator | Tian, Zhihong Zhao, Yuwei Zheng, Zicheng Meng, Xiangang |
description | Aiming at the fault diagnosis characteristics of LED landscape lighting equipment, a class of genetic algorithm improved particle swarm optimization optimized wavelet neural network model is constructed. This fusion algorithm introduces the idea of cross factors and inertia weights in the genetic algorithm to the basic particle swarm optimization algorithm, and adjusts for the traits of the standard wavelet neural network that has a slow convergence rate and might fall into local extreme values. The simulation results prove that this fusion algorithm can be efficaciously applied to the fault diagnosis of LED landscape lighting equipment and meet the needs of real-time monitoring of equipment. |
doi_str_mv | 10.1088/1742-6596/1650/3/032142 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2571078796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2571078796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2742-96dbe4327701978ad7b0bb222825938a75cba1a625102e1b7a8b465840ef5b9a3</originalsourceid><addsrcrecordid>eNqFkFtLw0AQhRdRsFZ_gwHfhJq9ZLO7j1JbLwQUL8_LbLJpt7RJups8-O9NiFQEwXmZgTlnzvAhdEnwDcFSxkQkdJZylcYk5ThmMWaUJPQITQ6b48Ms5Sk6C2GDMetLTJDKFndRBlURcmhslLnVunXVKlrsO9fsbNVGS-i2bXTnYFXVwYXo1QYLPl-fo5MStsFefPcp-lgu3ucPs-z5_nF-m81yOmSqtDA2YVQITJSQUAiDjaGUSsoVkyB4boBASjnB1BIjQJqkfzTBtuRGAZuiq_Fu4-t9Z0OrN3Xnqz5SUy4IFlKotFeJUZX7OgRvS914twP_qQnWAyc9ENADDT1w0kyPnHonG52ubn5O_--6_sP19DJ_-y3UTVGyL22cdSE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571078796</pqid></control><display><type>article</type><title>LED Landscape Lighting Equipment Fault Diagnosis Research</title><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Tian, Zhihong ; Zhao, Yuwei ; Zheng, Zicheng ; Meng, Xiangang</creator><creatorcontrib>Tian, Zhihong ; Zhao, Yuwei ; Zheng, Zicheng ; Meng, Xiangang</creatorcontrib><description>Aiming at the fault diagnosis characteristics of LED landscape lighting equipment, a class of genetic algorithm improved particle swarm optimization optimized wavelet neural network model is constructed. This fusion algorithm introduces the idea of cross factors and inertia weights in the genetic algorithm to the basic particle swarm optimization algorithm, and adjusts for the traits of the standard wavelet neural network that has a slow convergence rate and might fall into local extreme values. The simulation results prove that this fusion algorithm can be efficaciously applied to the fault diagnosis of LED landscape lighting equipment and meet the needs of real-time monitoring of equipment.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1650/3/032142</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Extreme values ; Fault diagnosis ; Genetic algorithms ; Light emitting diodes ; Lighting equipment ; Neural networks ; Particle swarm optimization ; Physics</subject><ispartof>Journal of physics. Conference series, 2020-10, Vol.1650 (3), p.32142</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2742-96dbe4327701978ad7b0bb222825938a75cba1a625102e1b7a8b465840ef5b9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1650/3/032142/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Tian, Zhihong</creatorcontrib><creatorcontrib>Zhao, Yuwei</creatorcontrib><creatorcontrib>Zheng, Zicheng</creatorcontrib><creatorcontrib>Meng, Xiangang</creatorcontrib><title>LED Landscape Lighting Equipment Fault Diagnosis Research</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Aiming at the fault diagnosis characteristics of LED landscape lighting equipment, a class of genetic algorithm improved particle swarm optimization optimized wavelet neural network model is constructed. This fusion algorithm introduces the idea of cross factors and inertia weights in the genetic algorithm to the basic particle swarm optimization algorithm, and adjusts for the traits of the standard wavelet neural network that has a slow convergence rate and might fall into local extreme values. The simulation results prove that this fusion algorithm can be efficaciously applied to the fault diagnosis of LED landscape lighting equipment and meet the needs of real-time monitoring of equipment.</description><subject>Extreme values</subject><subject>Fault diagnosis</subject><subject>Genetic algorithms</subject><subject>Light emitting diodes</subject><subject>Lighting equipment</subject><subject>Neural networks</subject><subject>Particle swarm optimization</subject><subject>Physics</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkFtLw0AQhRdRsFZ_gwHfhJq9ZLO7j1JbLwQUL8_LbLJpt7RJups8-O9NiFQEwXmZgTlnzvAhdEnwDcFSxkQkdJZylcYk5ThmMWaUJPQITQ6b48Ms5Sk6C2GDMetLTJDKFndRBlURcmhslLnVunXVKlrsO9fsbNVGS-i2bXTnYFXVwYXo1QYLPl-fo5MStsFefPcp-lgu3ucPs-z5_nF-m81yOmSqtDA2YVQITJSQUAiDjaGUSsoVkyB4boBASjnB1BIjQJqkfzTBtuRGAZuiq_Fu4-t9Z0OrN3Xnqz5SUy4IFlKotFeJUZX7OgRvS914twP_qQnWAyc9ENADDT1w0kyPnHonG52ubn5O_--6_sP19DJ_-y3UTVGyL22cdSE</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Tian, Zhihong</creator><creator>Zhao, Yuwei</creator><creator>Zheng, Zicheng</creator><creator>Meng, Xiangang</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20201001</creationdate><title>LED Landscape Lighting Equipment Fault Diagnosis Research</title><author>Tian, Zhihong ; Zhao, Yuwei ; Zheng, Zicheng ; Meng, Xiangang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2742-96dbe4327701978ad7b0bb222825938a75cba1a625102e1b7a8b465840ef5b9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Extreme values</topic><topic>Fault diagnosis</topic><topic>Genetic algorithms</topic><topic>Light emitting diodes</topic><topic>Lighting equipment</topic><topic>Neural networks</topic><topic>Particle swarm optimization</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Zhihong</creatorcontrib><creatorcontrib>Zhao, Yuwei</creatorcontrib><creatorcontrib>Zheng, Zicheng</creatorcontrib><creatorcontrib>Meng, Xiangang</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Zhihong</au><au>Zhao, Yuwei</au><au>Zheng, Zicheng</au><au>Meng, Xiangang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LED Landscape Lighting Equipment Fault Diagnosis Research</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>1650</volume><issue>3</issue><spage>32142</spage><pages>32142-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Aiming at the fault diagnosis characteristics of LED landscape lighting equipment, a class of genetic algorithm improved particle swarm optimization optimized wavelet neural network model is constructed. This fusion algorithm introduces the idea of cross factors and inertia weights in the genetic algorithm to the basic particle swarm optimization algorithm, and adjusts for the traits of the standard wavelet neural network that has a slow convergence rate and might fall into local extreme values. The simulation results prove that this fusion algorithm can be efficaciously applied to the fault diagnosis of LED landscape lighting equipment and meet the needs of real-time monitoring of equipment.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1650/3/032142</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2020-10, Vol.1650 (3), p.32142 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2571078796 |
source | Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Extreme values Fault diagnosis Genetic algorithms Light emitting diodes Lighting equipment Neural networks Particle swarm optimization Physics |
title | LED Landscape Lighting Equipment Fault Diagnosis Research |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T01%3A48%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LED%20Landscape%20Lighting%20Equipment%20Fault%20Diagnosis%20Research&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Tian,%20Zhihong&rft.date=2020-10-01&rft.volume=1650&rft.issue=3&rft.spage=32142&rft.pages=32142-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1650/3/032142&rft_dat=%3Cproquest_iop_j%3E2571078796%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2571078796&rft_id=info:pmid/&rfr_iscdi=true |