LED Landscape Lighting Equipment Fault Diagnosis Research

Aiming at the fault diagnosis characteristics of LED landscape lighting equipment, a class of genetic algorithm improved particle swarm optimization optimized wavelet neural network model is constructed. This fusion algorithm introduces the idea of cross factors and inertia weights in the genetic al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2020-10, Vol.1650 (3), p.32142
Hauptverfasser: Tian, Zhihong, Zhao, Yuwei, Zheng, Zicheng, Meng, Xiangang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 32142
container_title Journal of physics. Conference series
container_volume 1650
creator Tian, Zhihong
Zhao, Yuwei
Zheng, Zicheng
Meng, Xiangang
description Aiming at the fault diagnosis characteristics of LED landscape lighting equipment, a class of genetic algorithm improved particle swarm optimization optimized wavelet neural network model is constructed. This fusion algorithm introduces the idea of cross factors and inertia weights in the genetic algorithm to the basic particle swarm optimization algorithm, and adjusts for the traits of the standard wavelet neural network that has a slow convergence rate and might fall into local extreme values. The simulation results prove that this fusion algorithm can be efficaciously applied to the fault diagnosis of LED landscape lighting equipment and meet the needs of real-time monitoring of equipment.
doi_str_mv 10.1088/1742-6596/1650/3/032142
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2571078796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2571078796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2742-96dbe4327701978ad7b0bb222825938a75cba1a625102e1b7a8b465840ef5b9a3</originalsourceid><addsrcrecordid>eNqFkFtLw0AQhRdRsFZ_gwHfhJq9ZLO7j1JbLwQUL8_LbLJpt7RJups8-O9NiFQEwXmZgTlnzvAhdEnwDcFSxkQkdJZylcYk5ThmMWaUJPQITQ6b48Ms5Sk6C2GDMetLTJDKFndRBlURcmhslLnVunXVKlrsO9fsbNVGS-i2bXTnYFXVwYXo1QYLPl-fo5MStsFefPcp-lgu3ucPs-z5_nF-m81yOmSqtDA2YVQITJSQUAiDjaGUSsoVkyB4boBASjnB1BIjQJqkfzTBtuRGAZuiq_Fu4-t9Z0OrN3Xnqz5SUy4IFlKotFeJUZX7OgRvS914twP_qQnWAyc9ENADDT1w0kyPnHonG52ubn5O_--6_sP19DJ_-y3UTVGyL22cdSE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571078796</pqid></control><display><type>article</type><title>LED Landscape Lighting Equipment Fault Diagnosis Research</title><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Tian, Zhihong ; Zhao, Yuwei ; Zheng, Zicheng ; Meng, Xiangang</creator><creatorcontrib>Tian, Zhihong ; Zhao, Yuwei ; Zheng, Zicheng ; Meng, Xiangang</creatorcontrib><description>Aiming at the fault diagnosis characteristics of LED landscape lighting equipment, a class of genetic algorithm improved particle swarm optimization optimized wavelet neural network model is constructed. This fusion algorithm introduces the idea of cross factors and inertia weights in the genetic algorithm to the basic particle swarm optimization algorithm, and adjusts for the traits of the standard wavelet neural network that has a slow convergence rate and might fall into local extreme values. The simulation results prove that this fusion algorithm can be efficaciously applied to the fault diagnosis of LED landscape lighting equipment and meet the needs of real-time monitoring of equipment.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1650/3/032142</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Extreme values ; Fault diagnosis ; Genetic algorithms ; Light emitting diodes ; Lighting equipment ; Neural networks ; Particle swarm optimization ; Physics</subject><ispartof>Journal of physics. Conference series, 2020-10, Vol.1650 (3), p.32142</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2742-96dbe4327701978ad7b0bb222825938a75cba1a625102e1b7a8b465840ef5b9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1650/3/032142/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Tian, Zhihong</creatorcontrib><creatorcontrib>Zhao, Yuwei</creatorcontrib><creatorcontrib>Zheng, Zicheng</creatorcontrib><creatorcontrib>Meng, Xiangang</creatorcontrib><title>LED Landscape Lighting Equipment Fault Diagnosis Research</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Aiming at the fault diagnosis characteristics of LED landscape lighting equipment, a class of genetic algorithm improved particle swarm optimization optimized wavelet neural network model is constructed. This fusion algorithm introduces the idea of cross factors and inertia weights in the genetic algorithm to the basic particle swarm optimization algorithm, and adjusts for the traits of the standard wavelet neural network that has a slow convergence rate and might fall into local extreme values. The simulation results prove that this fusion algorithm can be efficaciously applied to the fault diagnosis of LED landscape lighting equipment and meet the needs of real-time monitoring of equipment.</description><subject>Extreme values</subject><subject>Fault diagnosis</subject><subject>Genetic algorithms</subject><subject>Light emitting diodes</subject><subject>Lighting equipment</subject><subject>Neural networks</subject><subject>Particle swarm optimization</subject><subject>Physics</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkFtLw0AQhRdRsFZ_gwHfhJq9ZLO7j1JbLwQUL8_LbLJpt7RJups8-O9NiFQEwXmZgTlnzvAhdEnwDcFSxkQkdJZylcYk5ThmMWaUJPQITQ6b48Ms5Sk6C2GDMetLTJDKFndRBlURcmhslLnVunXVKlrsO9fsbNVGS-i2bXTnYFXVwYXo1QYLPl-fo5MStsFefPcp-lgu3ucPs-z5_nF-m81yOmSqtDA2YVQITJSQUAiDjaGUSsoVkyB4boBASjnB1BIjQJqkfzTBtuRGAZuiq_Fu4-t9Z0OrN3Xnqz5SUy4IFlKotFeJUZX7OgRvS914twP_qQnWAyc9ENADDT1w0kyPnHonG52ubn5O_--6_sP19DJ_-y3UTVGyL22cdSE</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Tian, Zhihong</creator><creator>Zhao, Yuwei</creator><creator>Zheng, Zicheng</creator><creator>Meng, Xiangang</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20201001</creationdate><title>LED Landscape Lighting Equipment Fault Diagnosis Research</title><author>Tian, Zhihong ; Zhao, Yuwei ; Zheng, Zicheng ; Meng, Xiangang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2742-96dbe4327701978ad7b0bb222825938a75cba1a625102e1b7a8b465840ef5b9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Extreme values</topic><topic>Fault diagnosis</topic><topic>Genetic algorithms</topic><topic>Light emitting diodes</topic><topic>Lighting equipment</topic><topic>Neural networks</topic><topic>Particle swarm optimization</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Zhihong</creatorcontrib><creatorcontrib>Zhao, Yuwei</creatorcontrib><creatorcontrib>Zheng, Zicheng</creatorcontrib><creatorcontrib>Meng, Xiangang</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Zhihong</au><au>Zhao, Yuwei</au><au>Zheng, Zicheng</au><au>Meng, Xiangang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LED Landscape Lighting Equipment Fault Diagnosis Research</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>1650</volume><issue>3</issue><spage>32142</spage><pages>32142-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Aiming at the fault diagnosis characteristics of LED landscape lighting equipment, a class of genetic algorithm improved particle swarm optimization optimized wavelet neural network model is constructed. This fusion algorithm introduces the idea of cross factors and inertia weights in the genetic algorithm to the basic particle swarm optimization algorithm, and adjusts for the traits of the standard wavelet neural network that has a slow convergence rate and might fall into local extreme values. The simulation results prove that this fusion algorithm can be efficaciously applied to the fault diagnosis of LED landscape lighting equipment and meet the needs of real-time monitoring of equipment.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1650/3/032142</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2020-10, Vol.1650 (3), p.32142
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2571078796
source Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Extreme values
Fault diagnosis
Genetic algorithms
Light emitting diodes
Lighting equipment
Neural networks
Particle swarm optimization
Physics
title LED Landscape Lighting Equipment Fault Diagnosis Research
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T01%3A48%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LED%20Landscape%20Lighting%20Equipment%20Fault%20Diagnosis%20Research&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Tian,%20Zhihong&rft.date=2020-10-01&rft.volume=1650&rft.issue=3&rft.spage=32142&rft.pages=32142-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1650/3/032142&rft_dat=%3Cproquest_iop_j%3E2571078796%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2571078796&rft_id=info:pmid/&rfr_iscdi=true